Câu hỏi:

31/05/2021 1,475

Cho hình chữ nhật ABCD có AB = a;AD = b. Cho M, N, P, Q là các đỉnh của tứ giác MNPQ và lần lượt thuộc các cạnh AB, BC, CD, DA. Tìm giá trị nhỏ nhất của chu vi tứ giác MNPQ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi I, H, K lần lượt là trung điểm các đoạn QM, QN, PN.

Xét tam giác AQM vuông tại A có AI là đường trung tuyến nên suy ra AI = 12QM

IH là đường trung bình của tam giác QMN nên IH = 12MN, IH // MN

Tương tự KC = 12NP, HK = 12PQ, HK // PQ

Do đó AI + IH + HK + KC = 12PMNPQ

Mặt khác nếu xét các điểm A, I, H, K, C ta có: AI + IH + HK + KC ≥ AC

Do đó PMNPQ ≥ 2AC (không đổi)

Dấu “=” xảy ra khi và chỉ khi A, I, H, K, C thẳng hang theo thứ tự đó. Điều đó tương đương với MN // AC // QP, QM // BD // NP hay MNPQ là hình bình hành

Theo định lý Pytago cho tam giác ACB vuông tại A ta có

AC2 = AB2 + BC2 = AB2 + AD2 = a2 + b2 => AC = a2+b2

Vậy giá trị nhỏ nhất của chu vi MNPQ là 2AC = 2 a2+b2

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP