Câu hỏi:
31/05/2021 7,221Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA. Hai đường chéo AC và BD phải thỏa mãn điều kiện gì dể M, N, P, Q là bốn đỉnh của hình vuông.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét tam giác ABD có:
M là trung điểm của AB (gt)
Q là trung điểm của AD (gt)
=> QM là đường trung bình của tam giác ABD. (định lý)
Do đó QM // BD và QM = BD (1)
Tương tự ta cũng có NP là đường trung bình của tam giác BCD.
=>
Từ (1) và (2) suy ra MNPQ là hình bình hành (dấu hiệu nhận biết)
Tương tự ta cũng có MN là đường trung bình của tam giác BAC nên MN // AC và MN = AC
Để hình bình hành MNPQ là hình vuông
=>
+ Để MN ⊥ NP => AC ⊥ BD (vì MN // AC, NP // BD)
+ Để MN = NP => AC = BD (vì MN = AC, NP = BD)
Vậy điều kiện cần để MNPQ là hình vuông là BD = AC; AC ⊥ BD
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q theo thứ tự là trung điểm của AD, AF, EF, ED. ΔABC có điều kiện gì thì MNPQ là hình chữ nhật?
Câu 2:
Cho hình vuông ABCD, E là một điểm trên cạnh CD. Tia phân giác của góc BAE cắt BC tại M. Chọn câu đúng.
Câu 3:
Cho tam giác ABC ( < 900). Về phía ngoài của tam giác ABC dựng các hình vuông ABDE, ACFG. Gọi M là trung điểm của đoạn thẳng DF. Chọn câu đúng.
về câu hỏi!