Câu hỏi:

31/05/2021 8,793

Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q theo thứ tự là trung điểm của AD, AF, EF, ED. ΔABC có điều kiện gì thì MNPQ là hình chữ nhật?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét ΔADE có: AM = MD; DQ = EQ nên MQ là đường trung bình của ΔADE

=> MQ // AE, MQ = 12AE

Xét ΔAEF có: AN = NF; FP = PE (giả thiết) nên NP là đường trung bình của ΔAEF.

=> NP // AE , NP = 12AE

Suy ra MQ // NP (cùng // AE) và MQ = NP (= 12AE)

Tứ giác MNPQ có: MQ // NP và MQ = NP nên là hình bình hành (dấu hiệu nhận biết).

Để MNPQ là hình chữ nhật thì MN ⊥  PQ (1)

Ta có: NP // AE (chứng minh trên) (2)

Ta lại có: AM = MD, AN = NF (gt) => MN // DF

Mặt khác: AD = DB, AF = FC (gt) => DF // BC

Vậy MN // BC (3)

Từ (1), (2), (3) suy ra: AE ⊥  BC

Mà BE = EC (gt)

Do đó ΔABC cân tại A (do AE vừa là đường cao, vừa là đường trung tuyến)

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA. Hai đường chéo AC và BD phải thỏa mãn điều kiện gì dể M, N, P, Q là bốn đỉnh của hình vuông.

Xem đáp án » 31/05/2021 7,295

Câu 2:

Cho hình vuông ABCD, E là một điểm trên cạnh CD. Tia phân giác của góc BAE cắt BC tại M. Chọn câu đúng.

Xem đáp án » 31/05/2021 4,291

Câu 3:

Cho tam giác ABC ( A^ < 900). Về phía ngoài của tam giác ABC dựng các hình vuông ABDE, ACFG. Gọi M là trung điểm của đoạn thẳng DF. Chọn câu đúng.

Xem đáp án » 14/08/2022 2,618

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store