Câu hỏi:

15/09/2019 11,938

Hộp bi thứ nhất có 4 viên bi đỏ, 3 viên bi vàng và 5 viên bi xanh. Hộp bi thứ hai có 2 viên bi đỏ, 6 viên bi vàng và 7 viên bi xanh. Chọn ngẫu nhiên mỗi hộp 2 viên bi, tính xác suất sao cho 4 viên bi được chọn luôn có bi đỏ nhưng không có bi xanh.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Không gian mẫu là chọn ngẫu nhiên mỗi hộp 2 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A  là biến cố 4 viên bi được chọn luôn có bi đỏ nhưng không có bi xanh . Ta liệt kê các trường hợp thuận lợi của không gian biến cố A như sau:

 ●   Trường hợp 1. Chọn hộp thứ nhất 2 viên bi đỏ, có  cách.

 Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có  cách.

Do đó trường hợp này có  cách.

●   Trường hợp 2. Chọn hộp thứ nhất 1 viên bi đỏ và 1 viên bi vàng, có  cách.

Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có  cách.

Do đó trường hợp này có  cách.

●   Trường hợp 3. Chọn hộp thứ nhất 2 viên bi vàng, có  cách.

Chọn hộp thứ hai 2 viên bi đỏ hoặc 1 viên bi đỏ và 1 viên bi vàng, có  cách.

Do đó trường hợp này có  cách.

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong một hộp có 50 viên bi được đánh số từ 1 đến 50. Chọn ngẫu nhiên 3 viên bi trong hộp, tính xác suất để tổng ba số trên 3 viên bi được chọn là một số chia hết cho 3.

Xem đáp án » 15/09/2019 110,382

Câu 2:

Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp, tính xác suất để 2 viên bi được lấy vừa khác màu vừa khác số.

Xem đáp án » 18/01/2021 100,868

Câu 3:

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số phân biệt. Chọn ngẫu nhiên một số từ S.Xác suất chọn được số lớn hơn 2500 là

Xem đáp án » 18/01/2021 85,824

Câu 4:

Một người bỏ ngẫu nhiên bốn lá thư vào 4 bì thư đã được ghi địa chỉ. Tính xác suất của các biến cố sau:

A: “ Có ít nhất một lá thư bỏ đúng phong bì của nó”.

Xem đáp án » 18/01/2021 47,758

Câu 5:

Có 3 chiếc hộp. Hộp A chứa 3 bi đỏ, 5 bi trắng. Hộp B chứa 2 bi đỏ, hai bi vàng. Hộp C chứa 2 bi đỏ, 3 bi xanh. Lấy ngẫu nhiên một hộp rồi lấy một bi từ hộp đó. Xác suất để được một bi đỏ là:

Xem đáp án » 15/09/2019 29,795

Câu 6:

Một tổ có 12 học sinh gồm có 7 học sinh nam và 5 học sinh nữ, trong đó An là tổ trưởng còn Hoa là tổ phó. Chọn ngẫu nhiên 5 học sinh trong tổ để tham gia hoạt động tập thể của trường nhân dịp ngày thành lập Đoàn 26 tháng 3. Tính xác suất để sao cho nhóm học sinh được chọn có 3 học sinh nam và 2 học sinh nữ trong đó phải nhất thiết có bạn An hoặc bạn Hoa nhưng không có cả hai (An là học sinh nam, Hoa là học sinh nữ).

Xem đáp án » 18/01/2021 23,237

Câu 7:

Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Vậy Lí và 3 cuốn sách Hóa Học. Thầy giáo muốn lấy ra 5 cuốn và tặng cho 5 học sinh A: B: C; D; E  mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng nếu sau khi tặng sách xong, mỗi một trong ba loại sách trên đều còn lại ít nhất một cuốn.

Xem đáp án » 15/09/2019 19,074

Bình luận


Bình luận

Xuân Tứ Đặng
20:11 - 11/12/2019

1 hộp chứa 5 bi vàng 3 bi trắng 4 bi đỏ người ta muốn lấy ra 4 viên tính xác xuất để chọn được ít nhất 1 bi trắng

trogiangvietjack
15:27 - 13/03/2020

.

Ảnh đính kèm
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store