Câu hỏi:

23/04/2022 1,454

Cho hàm số y=ax4+bx2+c  có đồ thị như hình vẽ bên.

Cho hàm số   có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng? (ảnh 1) 

Mệnh đề nào dưới đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Dựa vào đồ thị hàm số để nhận xét các điểm mà đồ thị hàm số đã đi qua, các điểm cực trị của hàm số để suy ra dấu của a,b,c.

Cho hàm số y=ax4+bx2+c(a0) ta có:

+) Hàm số có một cực trị ab0

+) Hàm số có ba cực trị ab<0

Giải chi tiết:

Dựa vào đồ thị hàm số ta thấy nét cuối của đồ thị đi xuống dưới

a<0 ⇒ loại đáp án C và D.

Đồ thị hàm số có 3 điểm cực trị ab<0b>0.

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

Ta có hình vẽ, khi đó chiến sĩ ở vị trí A, mục tiêu ở vị trí C.

Quãng đường chiến sĩ phải bơi là AD, quãng đường chiến sĩ phải chạy bộ là DC.

Ta có: BC=AC2AB2=100021002=30011(m).

Đặt BD=x(m),(0<x<30011).

⇒ Quãng đường chiến sĩ phải bơi là: AD=AB2+BD2=x2+1002(m).

Quãng đường chiến sĩ phải chạy bộ là: CD=BCBD=30011x(m).

⇒ Thời gian chiến sĩ đến được mục tiêu là: AD=AB2+BD2=x2+1002(m). 

Tìm x để t(x) đạt Min rồi suy ra quãng đường chiễn sĩ phải bơi.

Giải chi tiết:

Trong bài thi thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi (ảnh 1)

Gọi vận tốc của chiến sĩ khi bơi là a(m/s),(a>0).

⇒ Vận tốc của chiến sĩ khi chạy bộ là: 3a(m/s).

Ta có hình vẽ, khi đó chiến sĩ ở vị trí A, mục tiêu ở vị trí C.

Quãng đường chiến sĩ phải bơi là AD, quãng đường chiến sĩ phải chạy bộ là DC.

Ta có: BC=AC2AB2=100021002=30011(m).

Đặt BD=x(m),(0<x<30011).

⇒ Quãng đường chiến sĩ phải bơi là: AD=AB2+BD2=x2+1002(m).

Quãng đường chiến sĩ phải chạy bộ là: CD=BCBD=30011x(m).

⇒ Thời gian chiến sĩ đến được mục tiêu là: t=ADa+DC3a=x2+1002a+30011x3a

=13a(3x2+1002+30011x)

Xét hàm số: f(x)=3x2+1002x+30011trên (0;30011)ta có:

f'(x)=3x2x2+10021f'(x)=0

3x=2x2+10029x2=4x2+4.1002

5x2=4.1002

x2=45.1002x=255.100=405(tm)

⇒ Quãng đường bơi mà chiến sĩ phải bơi để đến được mục tiêu nhanh nhất là:

AD=x2+1002=45.1002+1002 =95.1002=605m.

Đáp án B

Lời giải

Phương pháp giải:

Xác định các điểm mà tại đó hàm số liên tục và qua đó đạo hàm đổi dấu.

Giải chi tiết:

Dựa vào BXD đạo hàm ta thấy:

Hàm số liên tục tại các điểm x=1,x=0,x=2,x=4 (do hàm số liên tục trên ) và qua các điểm đó đạo hàm đều đổi dấu.

Vậy hàm số y=f(x) có 4 điểm cực trị.

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay