Câu hỏi:

23/04/2022 1,093

Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y=x33(2m+1)x2+(12m+5)x+2  đồng biến trên khoảng (2;+).  Số phần tử của S bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Hàm số y=f(x) đồng biến trên (a;b)f'(x)0  x(a;b).

Giải chi tiết:

Xét hàm số: y=x33(2m+1)x2+(12m+5)+2

y'=3x26(2m+1)x+12m+5

y'=03x26(2m+1)x+12m+5=0(*)

TH1: Hàm số đã cho đồng biến trên 

y'0xΔ'0

9(2m+1)23(12m+5)0

9(4m2+4m+1)36m150

36m260m21666m66

TH2: Hàm số đã cho đồng biến trên (2;+)

(*) có hai nghiệm phân biệt x1,x2 thỏa mãn 2x1<x2

{Δ'>0(x12)(x12)0x1+x2>4{36m26>0x1x22(x1+x2)+40x1+x2>4

{m2>1612m+532.6(2m+1)3+406(2m+1)3>4{[m>66m<6612m+524m2+1204m+2>4

{[m>66m<6612m15m>12{[m>66m<66m54m>1212<m54

Kết hợp hai trường hợp ta được: [66m6612<m54

Lại có: m+m=1.

Vậy có 1 giá trị m thỏa mãn bài toán.

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

Ta có hình vẽ, khi đó chiến sĩ ở vị trí A, mục tiêu ở vị trí C.

Quãng đường chiến sĩ phải bơi là AD, quãng đường chiến sĩ phải chạy bộ là DC.

Ta có: BC=AC2AB2=100021002=30011(m).

Đặt BD=x(m),(0<x<30011).

⇒ Quãng đường chiến sĩ phải bơi là: AD=AB2+BD2=x2+1002(m).

Quãng đường chiến sĩ phải chạy bộ là: CD=BCBD=30011x(m).

⇒ Thời gian chiến sĩ đến được mục tiêu là: AD=AB2+BD2=x2+1002(m). 

Tìm x để t(x) đạt Min rồi suy ra quãng đường chiễn sĩ phải bơi.

Giải chi tiết:

Trong bài thi thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi (ảnh 1)

Gọi vận tốc của chiến sĩ khi bơi là a(m/s),(a>0).

⇒ Vận tốc của chiến sĩ khi chạy bộ là: 3a(m/s).

Ta có hình vẽ, khi đó chiến sĩ ở vị trí A, mục tiêu ở vị trí C.

Quãng đường chiến sĩ phải bơi là AD, quãng đường chiến sĩ phải chạy bộ là DC.

Ta có: BC=AC2AB2=100021002=30011(m).

Đặt BD=x(m),(0<x<30011).

⇒ Quãng đường chiến sĩ phải bơi là: AD=AB2+BD2=x2+1002(m).

Quãng đường chiến sĩ phải chạy bộ là: CD=BCBD=30011x(m).

⇒ Thời gian chiến sĩ đến được mục tiêu là: t=ADa+DC3a=x2+1002a+30011x3a

=13a(3x2+1002+30011x)

Xét hàm số: f(x)=3x2+1002x+30011trên (0;30011)ta có:

f'(x)=3x2x2+10021f'(x)=0

3x=2x2+10029x2=4x2+4.1002

5x2=4.1002

x2=45.1002x=255.100=405(tm)

⇒ Quãng đường bơi mà chiến sĩ phải bơi để đến được mục tiêu nhanh nhất là:

AD=x2+1002=45.1002+1002 =95.1002=605m.

Đáp án B

Lời giải

Phương pháp giải:

Xác định các điểm mà tại đó hàm số liên tục và qua đó đạo hàm đổi dấu.

Giải chi tiết:

Dựa vào BXD đạo hàm ta thấy:

Hàm số liên tục tại các điểm x=1,x=0,x=2,x=4 (do hàm số liên tục trên ) và qua các điểm đó đạo hàm đều đổi dấu.

Vậy hàm số y=f(x) có 4 điểm cực trị.

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay