Câu hỏi:

23/04/2022 2,344

Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số g(x)=f(4xx2)+13x33x2+8x53trên đoạn [1;3].

 (VDC): Cho hàm số có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số trên đoạn . (ảnh 4)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải chi tiết:

Ta có:

g′(x)=(4−2x)f′(4x−x2)+x2−6x+8=−2(x−2)f′(4x−x2)+(x−2)(x−4)=(x−2)[−2f′(4x−x2)+x−4]g′(x)=(4−2x)f′(4x−x2)+x2−6x+8=−2(x−2)f′(4x−x2)+(x−2)(x−4)=(x−2)[−2f′(4x−x2)+x−4].

g'(x)=(42x)f'(4xx2)+x26x+8

=2(x2)f'(4xx2)+(x2)(x4)

=(x2)[2f'(4xx2)+x4]

Cho g'(x)=0[x=22f'(4xx2)+x4=0

Xét hàm số h(x)=4xx2 với x[1;3] ta có h'(x)=42x=0x=2

h(2)=4;h(1)=3;h(3)=3

{min[1;3]h(x)=3max[1;3]h(x)=4h(x)[3;4] khi x[1;3].

Dựa vào BBT ta thấy với \[4x - {x^2} \in \left[ {3;4} \right]\] thì f'(4xx2)>02f'(4xx2)<0.

Lại có x4<0x[1;3], do đó 2f'(4xx2)+x4<0x[1;3].

Suy ra g'(x)=0x=2.

Vậy max[1;3]g(x)=g(2)=f(4)+5=5+5=10.

Đáp án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

- Tính g'(x).

- Giải phương trình \[g'\left( x \right) = 0\], xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).

- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.

- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.

Giải chi tiết:

Ta có: g(x)=f(x+m)g'(x)=f'(x+m).

Cho g'(x)=0f'(x+m)=0[x+m=1x+m=1x+m=3[x=1mx=1mx=3m.

Ta có \[g'\left( x \right) >0 \Leftrightarrow f'\left( {x + m} \right) >0\] \[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 < x + m < 1}\\{x + m >3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 - m < x < 1 - m}\\{x >3 - m}\end{array}} \right.\].</></>

BXD g'(x):

 (VD): Cho hàm số có đạo hàm liên tục trên . Biết hàm số có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng . Hỏi có bao nhiêu phần tử? (ảnh 18)

Để hàm số g(x) nghịch biến trên (1;2) thì [21m1m1<23m[m30m1.

Kết hợp điều kiện m[2021;2021],mm[2021;3][0;1],m.

Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp S có 2021 phần tử.

Đáp án C.

Lời giải

Phương pháp giải:

Sử dụng hoán vị.

Giải chi tiết:

Số cách sắp xếp 8 học sinh thành một hàng dọc là \[8!\] cách.

Đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay