Câu hỏi:

23/04/2022 1,696

Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số g(x)=f(4xx2)+13x33x2+8x53trên đoạn [1;3].

 (VDC): Cho hàm số có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số trên đoạn . (ảnh 4)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải chi tiết:

Ta có:

g′(x)=(4−2x)f′(4x−x2)+x2−6x+8=−2(x−2)f′(4x−x2)+(x−2)(x−4)=(x−2)[−2f′(4x−x2)+x−4]g′(x)=(4−2x)f′(4x−x2)+x2−6x+8=−2(x−2)f′(4x−x2)+(x−2)(x−4)=(x−2)[−2f′(4x−x2)+x−4].

g'(x)=(42x)f'(4xx2)+x26x+8

=2(x2)f'(4xx2)+(x2)(x4)

=(x2)[2f'(4xx2)+x4]

Cho g'(x)=0[x=22f'(4xx2)+x4=0

Xét hàm số h(x)=4xx2 với x[1;3] ta có h'(x)=42x=0x=2

h(2)=4;h(1)=3;h(3)=3

{min[1;3]h(x)=3max[1;3]h(x)=4h(x)[3;4] khi x[1;3].

Dựa vào BBT ta thấy với \[4x - {x^2} \in \left[ {3;4} \right]\] thì f'(4xx2)>02f'(4xx2)<0.

Lại có x4<0x[1;3], do đó 2f'(4xx2)+x4<0x[1;3].

Suy ra g'(x)=0x=2.

Vậy max[1;3]g(x)=g(2)=f(4)+5=5+5=10.

Đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên m[2021;2021] để hàm số g(x)=f(x+m) nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?

 (VD): Cho hàm số có đạo hàm liên tục trên . Biết hàm số có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng . Hỏi có bao nhiêu phần tử? (ảnh 8)

Xem đáp án » 23/04/2022 7,412

Câu 2:

Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số y=|3x48x36x2+24xm|có 7 điểm cực trị. Tính tổng các phần tử của S.

Xem đáp án » 23/04/2022 4,418

Câu 3:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=1log3(x22x+3m)có tập xác định là \[\mathbb{R}\].

Xem đáp án » 23/04/2022 3,382

Câu 4:

Có bao nhiêu cách sắp xếp 8 học sinh thành một hàng dọc?

Xem đáp án » 05/04/2022 3,160

Câu 5:

Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số y=x33x2 tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.

Xem đáp án » 23/04/2022 2,973

Câu 6:

Cho giới hạn limx4x2+3x4x2+4x=ab, với \[\frac{a}{b}\] là phân số tối giản. Tính giá trị của biểu thức a2b2.

Xem đáp án » 23/04/2022 1,567

Bình luận


Bình luận