Câu hỏi:
23/04/2022 3,131Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.
Quảng cáo
Trả lời:
Giải chi tiết:
Xét hàm số ta có .
Ta có BBT:
Dựa vào BBT, để đường thẳng y=m cắt đồ thị tại 3 điểm phân biệt thì .
Xét phương trình hoành độ giao điểm: .
Khi đó gọi là giao điểm của đồ thị hàm số và đường thẳng y=m thì ta có .
Theo bài ra ta có: .
Lại có a,b,c là 3 nghiệm phân biệt của phương trình (*) nên áp dụng định lí Vi-ét ta có: .
Giải hệ
Đáp án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
- Tính g'(x).
- Giải phương trình \[g'\left( x \right) = 0\], xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).
- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.
- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.
Giải chi tiết:
Ta có: .
Cho .
Ta có \[g'\left( x \right) >0 \Leftrightarrow f'\left( {x + m} \right) >0\] \[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 < x + m < 1}\\{x + m >3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 - m < x < 1 - m}\\{x >3 - m}\end{array}} \right.\].</></>
BXD g'(x):
Để hàm số g(x) nghịch biến trên (1;2) thì .
Kết hợp điều kiện .
Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp S có 2021 phần tử.
Đáp án C.
Lời giải
Phương pháp giải:
Sử dụng hoán vị.
Giải chi tiết:
Số cách sắp xếp 8 học sinh thành một hàng dọc là \[8!\] cách.
Đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận