Câu hỏi:

25/04/2022 1,133 Lưu

Đồ thị hàm số \(y = \frac{{{x^2} - 3x + 2}}{{{x^3} - x}}\) có mấy đường tiệm cận?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét \(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{x}\left( {\frac{{1 - \frac{3}{x} + \frac{2}{{{x^2}}}}}{{1 - \frac{1}{{{x^2}}}}}} \right) = 0\)

Nên đường \(y = 0\) là tiệm cận ngang của đồ thị hàm số.

Xét \({x^3} - x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\end{array} \right..\)

Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{x\left( {{x^2} - 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 2} \right)}}{{x\left( {x + 1} \right)}} = - \frac{1}{2}\). Nên đường \(x = 1\) không là đường tiệm cận đứng.

Nên đường \(x = 1\) không là đường tiệm cận đứng.

\(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = - \infty ;\mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = + \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = - \infty ;\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = + \infty \)

Nên đồ thị hàm số có các đường tiệm cận đứng là: \(x = - 1;x = 0\)

Vậy đồ thị hàm số có 3 đường tiệm cận.

Đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp tứ giác đều S.ABCD có SA = AB = a. Góc giữa SA và CD là (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SA;CD}} \right) = \left( {\widehat {SA;AB}} \right)\) mà \(S.ABCD\) là chóp tứ giác đều và \(SA = AB = a\) nên \(\Delta SAB\) đều. Vậy \(\widehat {\left( {SA;AB} \right)} = {60^0},\) khi đó góc giữa \(SA\) và \(CD\) là \({60^0}\) nên chọn đáp án A.

Lời giải

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật. Biết \(AB = a\sqrt 2 ,AD = 2a,SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 .\) Góc giữa hai đường thẳng \(SC\) và \(AB\) bằngA.\({ (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SC;AB}} \right) = \left( {\widehat {SC;CD}} \right) = \widehat {SCD}.\)

Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot SD\)

\( \Rightarrow \Delta SCD\) vuông tại D.

Trong tam giác vuông \(SAD\) có

\(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {2{a^2} + 4{a^2}} = a\sqrt 6 .\)

Trong tam giác vuông \(SCD\) có

\(\tan \widehat {SCD} = \frac{{SD}}{{CD}} = \frac{{a\sqrt 6 }}{{a\sqrt 2 }} = \sqrt 3 \Rightarrow \widehat {SCD} = {60^0}.\)

Vậy góc giữa hai đường thẳng \(SC\) và \(AB\) bằng \({60^0}.\)

Đáp án B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP