Câu hỏi:

25/04/2022 198

Tìm số hạng không chứa \(x\) trong khai triển \({\left( {x - \frac{2}{x}} \right)^n},n \in {\mathbb{N}^*}\) biết \(C_n^1 - 2.2.C_n^2 + {3.2^2}.C_n^3 - {4.2^3}.C_n^4 + {5.2^4}C_n^5 + ... + {\left( { - 1} \right)^n}.n{.2^{n - 1}}C_n^n = - 2022\)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét khai triển:

\({\left( {1 - x} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left( { - x} \right)}^k}} \)

\( = C_n^0 - C_n^1.x + C_n^2.{x^2} - C_n^3.{x^3} + ... + {\left( { - 1} \right)^k}.{x^k}.C_n^k + ... + C_n^2.{\left( { - x} \right)^n}\)

Lấy đạo hàm cả hai vế ta được:

\( - n{\left( {1 - x} \right)^{n - 1}} = - C_n^1 + 2.C_n^2.x - 3.{x^2}.C_n^3 + ... + {\left( { - 1} \right)^k}.k.{x^{k - 1}}.C_n^k + ... - C_n^n.n.{\left( { - x} \right)^{n - 1}}\)

\( \Rightarrow n{\left( {1 - x} \right)^{n - 1}} = C_n^1 - 2.x.C_n^2 + 3.{x^2}.C_n^3 - ... - {\left( { - 1} \right)^k}.k.{x^{k - 1}}.C_n^k - ... + C_n^n.n.{\left( { - x} \right)^{n - 1}}\)

Cho \(x = 2\) ta được

\(n.{\left( { - 1} \right)^{n - 1}} = C_n^1 - 2.2.C_n^2 + {3.2^2}.C_n^3 - {4.2^3}.C_n^4 + {5.2^4}.C_n^5 + ... + {\left( { - 1} \right)^n}.n{.2^{n - 1}}.C_n^n\)

\( \Leftrightarrow n.{\left( { - 1} \right)^{n - 1}} = - 2022 \Leftrightarrow n = 2022\)

Xét khai triển: \({\left( {x - \frac{2}{x}} \right)^{2020}} = \sum\limits_{k = 0}^{2022} {C_{2022}^k.{x^{2022 - k}}.{{\left( {\frac{{ - 2}}{x}} \right)}^k}} \)

\( = \sum\limits_{k = 0}^{2022} {C_{2022}^k.{{\left( { - 2} \right)}^k}.{x^{2022 - 2k}}} \)

Số hạng không chứa \(x\) ứng với: \(2022 - 2k = 0\)

\( \Leftrightarrow k = 1011\)

Vậy số hạng không chứa \(x\) là: \( - C_{2022}^{1011}{.2^{1011}}\)

Đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số \(y = \sqrt {2x - {x^2}} \) nghịch biến trên khoảng:

Xem đáp án » 25/04/2022 6,165

Câu 2:

Cho hàm số \(y = \frac{1}{3}{x^3} - \frac{1}{2}\left( {m + 3} \right){x^2} + {m^2}x + 1.\) Có bao nhiêu số thực \(m\) để hàm số đạt cực trị tại \(x = 1?\)

Xem đáp án » 25/04/2022 4,526

Câu 3:

Cho hình chóp tứ giác đều \(S.ABCD\) có \(SA = AB = a.\) Góc giữa \(SA\) và \(CD\) là

Xem đáp án » 25/04/2022 4,084

Câu 4:

Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,AB = a,AC = a\sqrt 3 ,\) \(SB = a\sqrt 5 ,SA \bot \left( {ABC} \right).\) Tính thể tích khối chóp \(S.ABC.\)

Xem đáp án » 25/04/2022 3,018

Câu 5:

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật. Biết \(AB = a\sqrt 2 ,AD = 2a,SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 .\) Góc giữa hai đường thẳng \(SC\) và \(AB\) bằng

Xem đáp án » 25/04/2022 2,793

Câu 6:

Cho tứ diện đều \(ABCD\) có cạnh bằng 1, gọi \(M\) là trung điểm \(AD\) và \(N\) trên cạnh \(BC\) sao cho \(BN = 2NC.\) Khoảng cách giữa hai đường thẳng \(MN\) và \(CD\) là

Xem đáp án » 25/04/2022 2,683

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.  Trong đoạn \(\left[ { - 20;20} \right]\), có bao nhiêu số nguyên \(m\) để hàm số \(y = \left| {10f\left( {x - m} \right) - \frac{{ (ảnh 1)

Trong đoạn \(\left[ { - 20;20} \right]\), có bao nhiêu số nguyên \(m\) để hàm số \(y = \left| {10f\left( {x - m} \right) - \frac{{11}}{3}{m^2} + \frac{{37}}{3}m} \right|\) có 3 điểm cực trị?

Xem đáp án » 25/04/2022 1,624

Bình luận


Bình luận