Tìm số hạng không chứa \(x\) trong khai triển \({\left( {x - \frac{2}{x}} \right)^n},n \in {\mathbb{N}^*}\) biết \(C_n^1 - 2.2.C_n^2 + {3.2^2}.C_n^3 - {4.2^3}.C_n^4 + {5.2^4}C_n^5 + ... + {\left( { - 1} \right)^n}.n{.2^{n - 1}}C_n^n = - 2022\)
Quảng cáo
Trả lời:
Xét khai triển:
\({\left( {1 - x} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left( { - x} \right)}^k}} \)
\( = C_n^0 - C_n^1.x + C_n^2.{x^2} - C_n^3.{x^3} + ... + {\left( { - 1} \right)^k}.{x^k}.C_n^k + ... + C_n^2.{\left( { - x} \right)^n}\)
Lấy đạo hàm cả hai vế ta được:
\( - n{\left( {1 - x} \right)^{n - 1}} = - C_n^1 + 2.C_n^2.x - 3.{x^2}.C_n^3 + ... + {\left( { - 1} \right)^k}.k.{x^{k - 1}}.C_n^k + ... - C_n^n.n.{\left( { - x} \right)^{n - 1}}\)
\( \Rightarrow n{\left( {1 - x} \right)^{n - 1}} = C_n^1 - 2.x.C_n^2 + 3.{x^2}.C_n^3 - ... - {\left( { - 1} \right)^k}.k.{x^{k - 1}}.C_n^k - ... + C_n^n.n.{\left( { - x} \right)^{n - 1}}\)
Cho \(x = 2\) ta được
\(n.{\left( { - 1} \right)^{n - 1}} = C_n^1 - 2.2.C_n^2 + {3.2^2}.C_n^3 - {4.2^3}.C_n^4 + {5.2^4}.C_n^5 + ... + {\left( { - 1} \right)^n}.n{.2^{n - 1}}.C_n^n\)
\( \Leftrightarrow n.{\left( { - 1} \right)^{n - 1}} = - 2022 \Leftrightarrow n = 2022\)
Xét khai triển: \({\left( {x - \frac{2}{x}} \right)^{2020}} = \sum\limits_{k = 0}^{2022} {C_{2022}^k.{x^{2022 - k}}.{{\left( {\frac{{ - 2}}{x}} \right)}^k}} \)
\( = \sum\limits_{k = 0}^{2022} {C_{2022}^k.{{\left( { - 2} \right)}^k}.{x^{2022 - 2k}}} \)
Số hạng không chứa \(x\) ứng với: \(2022 - 2k = 0\)
\( \Leftrightarrow k = 1011\)
Vậy số hạng không chứa \(x\) là: \( - C_{2022}^{1011}{.2^{1011}}\)
Đáp án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(AB//CD\) nên \(\left( {\widehat {SA;CD}} \right) = \left( {\widehat {SA;AB}} \right)\) mà \(S.ABCD\) là chóp tứ giác đều và \(SA = AB = a\) nên \(\Delta SAB\) đều. Vậy \(\widehat {\left( {SA;AB} \right)} = {60^0},\) khi đó góc giữa \(SA\) và \(CD\) là \({60^0}\) nên chọn đáp án A.
Lời giải
Vì \(AB//CD\) nên \(\left( {\widehat {SC;AB}} \right) = \left( {\widehat {SC;CD}} \right) = \widehat {SCD}.\)
Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot SD\)
\( \Rightarrow \Delta SCD\) vuông tại D.
Trong tam giác vuông \(SAD\) có
\(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {2{a^2} + 4{a^2}} = a\sqrt 6 .\)
Trong tam giác vuông \(SCD\) có
\(\tan \widehat {SCD} = \frac{{SD}}{{CD}} = \frac{{a\sqrt 6 }}{{a\sqrt 2 }} = \sqrt 3 \Rightarrow \widehat {SCD} = {60^0}.\)
Vậy góc giữa hai đường thẳng \(SC\) và \(AB\) bằng \({60^0}.\)
Đáp án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.