Câu hỏi:

25/04/2022 293

Cho hình chóp \(S.ABC\) có \(AB = AC = 5a;BC = 6a.\) Các mặt bên tạo với đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABC\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp \(S.ABC\) có \(AB = AC = 5a;BC = 6a.\) Các mặt bên tạo với đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABC\) (ảnh 1)

Gọi \(H\) là hình chiếu của \(S\) trên mặt phẳng \(\left( {ABC} \right).\) Các điểm \(M,N,P\) lần lượt là hình chiếu của \(H\) trên các cạnh \(AB,AC,BC.\)

Khi đó ta có: \(\widehat {SMH} = \widehat {SNH} = \widehat {SPH} = {60^0},\) suy ra: \(HM = HN = HP\) hay \(H\) là tâm đường tròn nội tiếp tam giác \(ABC.\)

Xé tam giác \(ABC\) ta có:

Nửa chu vi: \(p = \frac{{AB + BC + CA}}{2} = \frac{{5a + 5a + 6a}}{2} = 8a.\)

Diện tích: \({S_{\Delta ABC}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {8a.3a.3a.2a} = 12{a^2}.\)

Áp dụng công thức \(S = pr \Rightarrow r = \frac{S}{p} = \frac{{12{a^2}}}{{8a}} = \frac{{3a}}{2}.\)

Suy ra: \(HM = r = \frac{{3a}}{2},SH = HM.\tan {60^0} = \frac{{3a}}{2}.\sqrt 3 = \frac{{3\sqrt 3 a}}{2}.\)

Vậy \({V_{ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{1}{3}.12{a^2}.\frac{{3\sqrt 3 a}}{2} = 6\sqrt 3 {a^3}.\)

Đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp tứ giác đều S.ABCD có SA = AB = a. Góc giữa SA và CD là (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SA;CD}} \right) = \left( {\widehat {SA;AB}} \right)\) mà \(S.ABCD\) là chóp tứ giác đều và \(SA = AB = a\) nên \(\Delta SAB\) đều. Vậy \(\widehat {\left( {SA;AB} \right)} = {60^0},\) khi đó góc giữa \(SA\) và \(CD\) là \({60^0}\) nên chọn đáp án A.

Lời giải

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật. Biết \(AB = a\sqrt 2 ,AD = 2a,SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 .\) Góc giữa hai đường thẳng \(SC\) và \(AB\) bằngA.\({ (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SC;AB}} \right) = \left( {\widehat {SC;CD}} \right) = \widehat {SCD}.\)

Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot SD\)

\( \Rightarrow \Delta SCD\) vuông tại D.

Trong tam giác vuông \(SAD\) có

\(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {2{a^2} + 4{a^2}} = a\sqrt 6 .\)

Trong tam giác vuông \(SCD\) có

\(\tan \widehat {SCD} = \frac{{SD}}{{CD}} = \frac{{a\sqrt 6 }}{{a\sqrt 2 }} = \sqrt 3 \Rightarrow \widehat {SCD} = {60^0}.\)

Vậy góc giữa hai đường thẳng \(SC\) và \(AB\) bằng \({60^0}.\)

Đáp án B.

Câu 3

Hàm số \(y = \sqrt {2x - {x^2}} \) nghịch biến trên khoảng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,AB = a,AC = a\sqrt 3 ,\) \(SB = a\sqrt 5 ,SA \bot \left( {ABC} \right).\) Tính thể tích khối chóp \(S.ABC.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay