Câu hỏi:

25/04/2022 873 Lưu

Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hnhf bên dưới

Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hnhf bên dướiHàm số \(g\left( x \right) = f\left( {1 - 2x} \right) + {x^2} - x\) nghịch biến trên khoảng nào  (ảnh 1)

Hàm số \(g\left( x \right) = f\left( {1 - 2x} \right) + {x^2} - x\) nghịch biến trên khoảng nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(g\left( x \right) = f\left( {1 - 2x} \right) + {x^2} - x.\)

\(g'\left( x \right) = - 2f'\left( {1 - 2x} \right) + 2x - 1.\)

\(g'\left( x \right) = 0 \Leftrightarrow f'\left( {1 - 2x} \right) = - \frac{{1 - 2x}}{2}\left( 1 \right).\)

Đặt \(t = 1 - 2x;\left( 1 \right) \Leftrightarrow f'\left( t \right) = - \frac{t}{2}.\)

Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hnhf bên dướiHàm số \(g\left( x \right) = f\left( {1 - 2x} \right) + {x^2} - x\) nghịch biến trên khoảng nào  (ảnh 2)

\( \Leftrightarrow \left[ \begin{array}{l}t = - 2\\t = 0\\t = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 - 2x = - 2\\1 - 2x = 0\\1 - 2x = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{3}{2}\\x = \frac{1}{2}\\x = - \frac{3}{2}\end{array} \right..\)

Ta có bảng biến thiên như sau:

Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hnhf bên dướiHàm số \(g\left( x \right) = f\left( {1 - 2x} \right) + {x^2} - x\) nghịch biến trên khoảng nào  (ảnh 3)

Vậy hàm số nghịch biến trên khoảng \(\left( {\frac{1}{2};1} \right).\)

Đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp tứ giác đều S.ABCD có SA = AB = a. Góc giữa SA và CD là (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SA;CD}} \right) = \left( {\widehat {SA;AB}} \right)\) mà \(S.ABCD\) là chóp tứ giác đều và \(SA = AB = a\) nên \(\Delta SAB\) đều. Vậy \(\widehat {\left( {SA;AB} \right)} = {60^0},\) khi đó góc giữa \(SA\) và \(CD\) là \({60^0}\) nên chọn đáp án A.

Lời giải

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật. Biết \(AB = a\sqrt 2 ,AD = 2a,SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 .\) Góc giữa hai đường thẳng \(SC\) và \(AB\) bằngA.\({ (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SC;AB}} \right) = \left( {\widehat {SC;CD}} \right) = \widehat {SCD}.\)

Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot SD\)

\( \Rightarrow \Delta SCD\) vuông tại D.

Trong tam giác vuông \(SAD\) có

\(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {2{a^2} + 4{a^2}} = a\sqrt 6 .\)

Trong tam giác vuông \(SCD\) có

\(\tan \widehat {SCD} = \frac{{SD}}{{CD}} = \frac{{a\sqrt 6 }}{{a\sqrt 2 }} = \sqrt 3 \Rightarrow \widehat {SCD} = {60^0}.\)

Vậy góc giữa hai đường thẳng \(SC\) và \(AB\) bằng \({60^0}.\)

Đáp án B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP