Câu hỏi:

25/04/2022 467

Cho hàm số \(f\left( x \right)\) liên tục trên tập R và biết \(y = f'\left( x \right)\) có đồ thị là đường cong trong hình bên dưới

Cho hàm số \(f\left( x \right)\) liên tục trên tập R và biết \(y = f'\left( x \right)\) có đồ thị là đường cong trong hình bên dướiSố điểm cực tiểu của hàm số \(h\left( x \right) = f\left( x  (ảnh 1)

Số điểm cực tiểu của hàm số \(h\left( x \right) = f\left( x \right) - \frac{3}{2}x\) là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(h\left( x \right) = f\left( x \right) - \frac{3}{2}x\)

\(h'\left( x \right) = f'\left( x \right) - \frac{3}{2}.\)

\(h'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = \frac{3}{2}\left( 1 \right)\)

Số nghiệm của phương trình \(\left( 1 \right)\) là số giao điểm của hai đường \(y = f'\left( x \right)\) và \(y = \frac{3}{2}.\)

Cho hàm số \(f\left( x \right)\) liên tục trên tập R và biết \(y = f'\left( x \right)\) có đồ thị là đường cong trong hình bên dướiSố điểm cực tiểu của hàm số \(h\left( x \right) = f\left( x  (ảnh 2)

Ta có bảng biến thiên sau:

Cho hàm số \(f\left( x \right)\) liên tục trên tập R và biết \(y = f'\left( x \right)\) có đồ thị là đường cong trong hình bên dướiSố điểm cực tiểu của hàm số \(h\left( x \right) = f\left( x  (ảnh 3)

Dựa vào bảng biến thiên ta có hàm số \(h\left( x \right) = f\left( x \right) - \frac{3}{2}x\) có 2 điểm cực tiểu.

Đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số \(y = \sqrt {2x - {x^2}} \) nghịch biến trên khoảng:

Xem đáp án » 25/04/2022 5,901

Câu 2:

Cho hàm số \(y = \frac{1}{3}{x^3} - \frac{1}{2}\left( {m + 3} \right){x^2} + {m^2}x + 1.\) Có bao nhiêu số thực \(m\) để hàm số đạt cực trị tại \(x = 1?\)

Xem đáp án » 25/04/2022 4,415

Câu 3:

Cho hình chóp tứ giác đều \(S.ABCD\) có \(SA = AB = a.\) Góc giữa \(SA\) và \(CD\) là

Xem đáp án » 25/04/2022 3,487

Câu 4:

Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,AB = a,AC = a\sqrt 3 ,\) \(SB = a\sqrt 5 ,SA \bot \left( {ABC} \right).\) Tính thể tích khối chóp \(S.ABC.\)

Xem đáp án » 25/04/2022 2,951

Câu 5:

Cho tứ diện đều \(ABCD\) có cạnh bằng 1, gọi \(M\) là trung điểm \(AD\) và \(N\) trên cạnh \(BC\) sao cho \(BN = 2NC.\) Khoảng cách giữa hai đường thẳng \(MN\) và \(CD\) là

Xem đáp án » 25/04/2022 2,549

Câu 6:

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật. Biết \(AB = a\sqrt 2 ,AD = 2a,SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 .\) Góc giữa hai đường thẳng \(SC\) và \(AB\) bằng

Xem đáp án » 25/04/2022 2,182

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.  Trong đoạn \(\left[ { - 20;20} \right]\), có bao nhiêu số nguyên \(m\) để hàm số \(y = \left| {10f\left( {x - m} \right) - \frac{{ (ảnh 1)

Trong đoạn \(\left[ { - 20;20} \right]\), có bao nhiêu số nguyên \(m\) để hàm số \(y = \left| {10f\left( {x - m} \right) - \frac{{11}}{3}{m^2} + \frac{{37}}{3}m} \right|\) có 3 điểm cực trị?

Xem đáp án » 25/04/2022 1,511

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store