Cho hình hộp \(ABCD.A'B'C'D'\) có đáy là hình chữ nhật, \(AB = \sqrt 3 ,AD = \sqrt 7 .\) Hai mặt bên \(\left( {ABB'A'} \right)\) và \(\left( {ADD'A'} \right)\) lần lượt tạo với đáy góc \({45^0}\) và \({60^0},\) biết cạnh bên bằng 1. Tính thể tích khối hộp.
Quảng cáo
Trả lời:
\(AH = h\)
Gọi \(H\) là hình chiếu của \(A\) trên đáy \(\left( {A'B'C'D'} \right)\) suy ra là chiều cao
Gọi \(I\) là hình chiếu của \(A\) trên \(A'B' \Rightarrow \widehat {AIH} = {45^0}\)
Gọi \(J\) là hình chiếu của \(A\) trên \(A'D' \Rightarrow \widehat {AJH} = {60^0}\)
Ta có \(\Delta AIH\) vuông cân tại \(H \Rightarrow IH = AH = h\)
\(\Delta AJH\) vuông tại \(H \Rightarrow JH = \frac{h}{{\tan {{60}^0}}} = \frac{{h\sqrt 3 }}{3}\)
Tứ giác \(A'JHI\) là hình chữ nhật \( \Rightarrow A'H = \frac{{2h\sqrt 3 }}{3}\)
\(\Delta AA'H\) vuông tại \(H \Rightarrow 1 = {h^2} + {\left( {\frac{{2h\sqrt 3 }}{3}} \right)^2} \Rightarrow h = \frac{{\sqrt {21} }}{7}\)
\({S_{ABCD}} = AB.AD = \sqrt {21} \)
\( \Rightarrow V = {S_{ABCD}}.h = \sqrt {21} .\frac{{\sqrt {21} }}{7} = 3\)
Đáp án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(AB//CD\) nên \(\left( {\widehat {SA;CD}} \right) = \left( {\widehat {SA;AB}} \right)\) mà \(S.ABCD\) là chóp tứ giác đều và \(SA = AB = a\) nên \(\Delta SAB\) đều. Vậy \(\widehat {\left( {SA;AB} \right)} = {60^0},\) khi đó góc giữa \(SA\) và \(CD\) là \({60^0}\) nên chọn đáp án A.
Lời giải
Vì \(AB//CD\) nên \(\left( {\widehat {SC;AB}} \right) = \left( {\widehat {SC;CD}} \right) = \widehat {SCD}.\)
Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot SD\)
\( \Rightarrow \Delta SCD\) vuông tại D.
Trong tam giác vuông \(SAD\) có
\(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {2{a^2} + 4{a^2}} = a\sqrt 6 .\)
Trong tam giác vuông \(SCD\) có
\(\tan \widehat {SCD} = \frac{{SD}}{{CD}} = \frac{{a\sqrt 6 }}{{a\sqrt 2 }} = \sqrt 3 \Rightarrow \widehat {SCD} = {60^0}.\)
Vậy góc giữa hai đường thẳng \(SC\) và \(AB\) bằng \({60^0}.\)
Đáp án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.