Câu hỏi:

25/04/2022 415 Lưu

Cho hình hộp \(ABCD.A'B'C'D'\) có đáy là hình chữ nhật, \(AB = \sqrt 3 ,AD = \sqrt 7 .\) Hai mặt bên \(\left( {ABB'A'} \right)\) và \(\left( {ADD'A'} \right)\) lần lượt tạo với đáy góc \({45^0}\) và \({60^0},\) biết cạnh bên bằng 1. Tính thể tích khối hộp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình hộp \(ABCD.A'B'C'D'\) có đáy là hình chữ nhật, \(AB = \sqrt 3 ,AD = \sqrt 7 .\) Hai mặt bên \(\left( {ABB'A'} \right)\) và \(\left( {ADD'A'} \right)\) lần lượt tạo với đáy góc \({45^ (ảnh 1)\(AH = h\)

Gọi \(H\) là hình chiếu của \(A\) trên đáy \(\left( {A'B'C'D'} \right)\) suy ra là chiều cao

Gọi \(I\) là hình chiếu của \(A\) trên \(A'B' \Rightarrow \widehat {AIH} = {45^0}\)

Gọi \(J\) là hình chiếu của \(A\) trên \(A'D' \Rightarrow \widehat {AJH} = {60^0}\)

Ta có \(\Delta AIH\) vuông cân tại \(H \Rightarrow IH = AH = h\)

\(\Delta AJH\) vuông tại \(H \Rightarrow JH = \frac{h}{{\tan {{60}^0}}} = \frac{{h\sqrt 3 }}{3}\)

Tứ giác \(A'JHI\) là hình chữ nhật \( \Rightarrow A'H = \frac{{2h\sqrt 3 }}{3}\)

\(\Delta AA'H\) vuông tại \(H \Rightarrow 1 = {h^2} + {\left( {\frac{{2h\sqrt 3 }}{3}} \right)^2} \Rightarrow h = \frac{{\sqrt {21} }}{7}\)

\({S_{ABCD}} = AB.AD = \sqrt {21} \)

\( \Rightarrow V = {S_{ABCD}}.h = \sqrt {21} .\frac{{\sqrt {21} }}{7} = 3\)

Đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp tứ giác đều S.ABCD có SA = AB = a. Góc giữa SA và CD là (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SA;CD}} \right) = \left( {\widehat {SA;AB}} \right)\) mà \(S.ABCD\) là chóp tứ giác đều và \(SA = AB = a\) nên \(\Delta SAB\) đều. Vậy \(\widehat {\left( {SA;AB} \right)} = {60^0},\) khi đó góc giữa \(SA\) và \(CD\) là \({60^0}\) nên chọn đáp án A.

Lời giải

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật. Biết \(AB = a\sqrt 2 ,AD = 2a,SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 .\) Góc giữa hai đường thẳng \(SC\) và \(AB\) bằngA.\({ (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SC;AB}} \right) = \left( {\widehat {SC;CD}} \right) = \widehat {SCD}.\)

Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot SD\)

\( \Rightarrow \Delta SCD\) vuông tại D.

Trong tam giác vuông \(SAD\) có

\(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {2{a^2} + 4{a^2}} = a\sqrt 6 .\)

Trong tam giác vuông \(SCD\) có

\(\tan \widehat {SCD} = \frac{{SD}}{{CD}} = \frac{{a\sqrt 6 }}{{a\sqrt 2 }} = \sqrt 3 \Rightarrow \widehat {SCD} = {60^0}.\)

Vậy góc giữa hai đường thẳng \(SC\) và \(AB\) bằng \({60^0}.\)

Đáp án B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP