Câu hỏi:
27/04/2022 418Gọi \(d\) là đường thẳng đi qua \(A\left( {2;0} \right)\) có hệ số góc \(m\left( {m >0} \right)\) cắt đồ thị tại ba điểm phân biệt \(A,B,C.\) Gọi \(B',C'\) lần lượt là hình chiếu vuông góc của \(B,C\) lên trục tung. Biết rằng hình thang \(BB'C'C\) có diện tích bằng 8, giá trị của \(m\) thuộc khoảng nào sau đây?
Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).
Quảng cáo
Trả lời:
Cách 1:
Phương trình đường thẳng \(\left( d \right)\) có hệ số góc \(m\) và đi qua \(A\left( {2;0} \right)\) là \(y = mx - 2m\)
Hoành độ giao điểm của \(\left( d \right)\) và \(\left( C \right)\) là nghiệm của phương trình:
\( - {x^3} + 6{x^2} - 9x + 2 = m\left( {x - 1} \right) \Leftrightarrow \left( {x - 2} \right)\left( {{x^2} - 4x + m + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\{x^2} - 4x + m + 1 = 0\left( 1 \right)\end{array} \right.\)
\(x = 2 \Rightarrow y = 0 \Rightarrow A\left( {2;0} \right).\) Do đó: \(\left( C \right)\) cắt \(\left( d \right)\) tại 3 điểm phân biệt \( \Leftrightarrow \) phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1};{x_2}\) khác \(2 \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 3 - m >0\\{2^2} - 4.2 + m + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m >- 3\\m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 3\\m \ne 3\end{array} \right. \Leftrightarrow m < 3\)
Theo định lí Vi-et: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 4\\{x_1}{x_2} = m + 1\end{array} \right.,\) mà \(m >0 \Rightarrow m + 1 >0 \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} >0\\{x_1}.{x_2} >0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_1} >0\\{x_2} >0\end{array} \right.\)
Giả sử \(B\left( {{x_1};m{x_1} - 2m} \right)\) và \(C\left( {{x_2};m{x_2} - 2m} \right) \Rightarrow B'\left( {0;m{x_1} - 2m} \right)\) và \(C'\left( {0;m{x_2} - 2m} \right).\)
\( \Rightarrow B'C' = \left| {m\left( {{x_1} - {x_2}} \right)} \right| = m\left| {{x_1} - {x_2}} \right|;BB' = \left| {{x_1}} \right| = {x_1};CC' = \left| {{x_2}} \right| = {x_2}\)
Ta có: \({S_{BB'C'C}} = \frac{1}{2}B'C'\left( {BB' + CC'} \right) = 8 \Leftrightarrow B'C'\left( {BB' + CC'} \right) = 16 \Leftrightarrow m\left| {{x_1} - {x_2}} \right|\left( {{x_1} + {x_2}} \right) = 16\)
\( \Leftrightarrow m\left| {{x_1} - {x_2}} \right| = 4 \Leftrightarrow {m^2}{\left( {{x_1} - {x_2}} \right)^2} = 16 \Leftrightarrow {m^2}\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right] = 16 \Leftrightarrow {m^2}\left( {16 - 4m - 4} \right) = 16\)
\( \Leftrightarrow {m^3} - 3{m^2} + 4 = 0 \Leftrightarrow \left( {m + 1} \right){\left( {m - 2} \right)^2} = 0 \Leftrightarrow m = - 1\) hoặc \(m = 2\)
Vì \(0 < m < 3 \Rightarrow m = 2 \Rightarrow m \in \left( {1;5} \right).\)
Cách 2:
Phương trình đường thẳng \(\left( d \right)\) có hệ số góc \(m\) và đi qua \(A\left( {2;0} \right)\) và \(y = m\left( {x - 2} \right)\)
Xét hàm số \(y = f\left( x \right) = - {x^3} + 6{x^2} - 9x + 2{\rm{ }}\left( C \right)\)
TXĐ: \(D = \mathbb{R}\)
\(y' = - 3{x^2} + 12x - 9 = 0 \Leftrightarrow - 6x = - 12 \Leftrightarrow x = 2;f\left( 2 \right) = 0\)
\( \Rightarrow \) Đồ thị \(\left( C \right)\) nhận điểm \(A\left( {2;0} \right)\) làm điểm uốn.
\( \Rightarrow B\) và \(C\) đối xứng nhau qua \(A;B'\) và \(C'\) đối xứng nhau qua \(O\)
\( \Rightarrow OA\) là đường trung bình của hình thang \(BB'C'C \Rightarrow \frac{{BB' + CC'}}{2} = OA = 2\)
Diện tích của hình thang \(BB'C'C\) bằng \(8 \Rightarrow B'C' = 4\)
Không mất tính tổng quát, giả sử \({y_B} >0 \Rightarrow {y_B} = 2 \Rightarrow - {x_B}^3 + 6x_B^2 - 9{x_B} + 2 = 2 \Rightarrow \left[ \begin{array}{l}{x_B} = 0\\{x_B} = 3\end{array} \right.\)
+ \({x_B} = 0 \Rightarrow B\left( {0;2} \right) \Rightarrow \left( d \right)\) có phương trình \(y = - x + 2 \Rightarrow m = - 1 < 0\) (loại).
+ \({x_B} = 3 \Rightarrow B\left( {3;2} \right) \Rightarrow \left( d \right)\) có phương trình \(y = 2x - 4 \Rightarrow m = 2\) (thỏa mãn).
Vậy giá trị của \(m\) thuộc khoảng \(\left( {1;5} \right).\)
Đáp án D
Đã bán 1,3k
Đã bán 187
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\)
Câu 2:
Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = {x^3} - 3\left( {2m + 1} \right){x^2} + \left( {12m + 5} \right)x + 2\) đồng biến trên khoảng \(\left( {2; + \infty } \right).\) Số phần tử của \(S\) bằng
Câu 3:
Cho các số dương \(a,b,c\) khác 1 thỏa mãn \({\log _a}\left( {bc} \right) = 3,{\log _b}\left( {ca} \right) = 4.\) Tính giá trị của \({\log _c}\left( {ab} \right).\)
Câu 4:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh \(a,\) cạnh bên SA vuông góc với mặt phẳng đáy và \(SA = a\sqrt 2 .\) Thể tích của khối chóp \(S.ABCD\) bằng
Câu 5:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = a,\) góc \(BAC = {120^0},AA' = a.\) Gọi \(M,N\) lần lượt là trung điểm của \(B'C'\) và \(CC'.\) Số đo góc giữa mặt phẳng \(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng
Câu 6:
Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = OB = OC = a.\) Khi đó thể tích của khối tứ diện \(OABC\) là
Câu 7:
Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a \ne 0} \right)\) có đồ thị của đạo hàm \(f'\left( x \right)\) như hình vẽ. Biết rằng \(e >n.\)
Số điểm cực trị của hàm số \(y = f'\left( {f\left( x \right) - 2x} \right)\) là
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
50 bài tập Hình học không gian có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận