Câu hỏi:

27/04/2022 479

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SAvuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = 3a.\) Mặt phẳng \(\left( P \right)\) chứa cạnh BCvà cắt hình chóp S.ABCDtheo thiết diện là một tứ giác có diện tích \(\frac{{2\sqrt 5 {a^2}}}{3}.\) Tính khoảng cách \(h\) giữa đường thẳng \(AD\) và mặt phẳng \(\left( P \right).\)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SAvuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = 3a.\) Mặt phẳng \(\left( P \right)\) chứa cạnh BCvà cắt hình chóp S.A (ảnh 1)

Gọi \(M,N\) lần lượt là giao điểm của \(\left( P \right)\) với \(SA,SD \Rightarrow MN//AD;\) kẻ \(AH \bot BM\) tại H

\(AD \bot SA;AD \bot AB \Rightarrow AD \bot \left( {SAB} \right) \Rightarrow MN \bot \left( {SAB} \right) \Rightarrow MN \bot MB\) và \(MN \bot AH\)

* \(MN \bot MB \Rightarrow \) Thiết diện là hình thang vuông \(BMNC\) có diện tích là \(\frac{{MB}}{2}.\left( {MN + BC} \right)\)

* \(AH \bot MN,AH \bot BM,MN//AD \Rightarrow AH\) là khoảng cách từ \(AD\) đến \(\left( P \right) \Rightarrow AH = h\)

Đặt \(AM = x\left( {0 < x < 3a} \right) \Rightarrow SM = 3a - x.\) Ta có: \(\frac{{MN}}{{AD}} = \frac{{SM}}{{SA}}\) (do \(MN//AD).\)

\( \Rightarrow \frac{{MN}}{a} = \frac{{3a - x}}{{3a}} \Rightarrow MN = \frac{{3a - x}}{3},\) mà \(MB = \sqrt {A{B^2} + A{M^2}} = \sqrt {{a^2} + {x^2}} \)

Diện tích thiết diện là \(\frac{{2\sqrt 5 {a^2}}}{3} \Rightarrow \frac{{\sqrt {{a^2} + {x^2}} }}{2}.\left( {\frac{{3a - x}}{3} + a} \right) = \frac{{2\sqrt 5 {a^2}}}{3}\)

\( \Leftrightarrow \sqrt {{a^2} + {x^2}} .\left( {6a - x} \right) = 4\sqrt 5 {a^2} \Leftrightarrow \left( {{a^2} + {x^2}} \right)\left( {36{a^2} - 12ax + {x^2}} \right) = 80{a^4}\)

\( \Leftrightarrow 36{a^4} - 12{a^3}x + {a^2}{x^2} + 36{a^2}{x^2} - 12a{x^3} + {x^4} - 80{a^4} = 0\)

\( \Leftrightarrow {x^4} - 12{x^3}x + 37{x^2}{a^2} - 12a{x^3} - 44{a^4} = 0 \Rightarrow x = 2a\)

\( \Rightarrow MB = a\sqrt 5 \Rightarrow h = AH = \frac{{AM.AB}}{{MB}} = \frac{{2a.a}}{{a\sqrt 5 }} = \frac{{2a}}{{\sqrt 5 }} = \frac{{2\sqrt 5 a}}{5}\)

Vậy khoảng cách \(h\) giữa đường thẳng \(AD\) và mặt phẳng \(\left( P \right)\) là \(\frac{{2\sqrt 5 a}}{5}.\)

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=ax3+bx2+cx+d(a,b,c,d) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\)

Cho hàm số có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\) (ảnh 1)

Xem đáp án » 27/04/2022 20,482

Câu 2:

Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = {x^3} - 3\left( {2m + 1} \right){x^2} + \left( {12m + 5} \right)x + 2\) đồng biến trên khoảng \(\left( {2; + \infty } \right).\) Số phần tử của \(S\) bằng

Xem đáp án » 27/04/2022 19,743

Câu 3:

Cho các số dương \(a,b,c\) khác 1 thỏa mãn \({\log _a}\left( {bc} \right) = 3,{\log _b}\left( {ca} \right) = 4.\) Tính giá trị của \({\log _c}\left( {ab} \right).\)

Xem đáp án » 27/04/2022 6,168

Câu 4:

Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a \ne 0} \right)\) có đồ thị của đạo hàm \(f'\left( x \right)\) như hình vẽ. Biết rằng \(e >n.\)

Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a \ne 0} \right)\) có đồ thị của đạo hàm \(f'\left( x \right)\) như hình vẽ. Biết rằng \(e >n.\)Số điểm cực trị của  (ảnh 1)

Số điểm cực trị của hàm số \(y = f'\left( {f\left( x \right) - 2x} \right)\) là

Xem đáp án » 27/04/2022 2,023

Câu 5:

Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^3} + 3{x^2} - 3\) song song với trục hoành?

Xem đáp án » 27/04/2022 1,970

Câu 6:

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = a,\) góc \(BAC = {120^0},AA' = a.\) Gọi \(M,N\) lần lượt là trung điểm của \(B'C'\) và \(CC'.\) Số đo góc giữa mặt phẳng \(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng

Xem đáp án » 27/04/2022 1,887

Câu 7:

Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong \(t\) giờ được cho bởi công thức \(c\left( t \right) = \frac{t}{{{t^2} + 1}}\left( {mg/L} \right).\) Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?

Xem đáp án » 27/04/2022 1,665

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store