Câu hỏi:
27/04/2022 853Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SAvuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = 3a.\) Mặt phẳng \(\left( P \right)\) chứa cạnh BCvà cắt hình chóp S.ABCDtheo thiết diện là một tứ giác có diện tích \(\frac{{2\sqrt 5 {a^2}}}{3}.\) Tính khoảng cách \(h\) giữa đường thẳng \(AD\) và mặt phẳng \(\left( P \right).\)
Quảng cáo
Trả lời:
Gọi \(M,N\) lần lượt là giao điểm của \(\left( P \right)\) với \(SA,SD \Rightarrow MN//AD;\) kẻ \(AH \bot BM\) tại H
\(AD \bot SA;AD \bot AB \Rightarrow AD \bot \left( {SAB} \right) \Rightarrow MN \bot \left( {SAB} \right) \Rightarrow MN \bot MB\) và \(MN \bot AH\)
* \(MN \bot MB \Rightarrow \) Thiết diện là hình thang vuông \(BMNC\) có diện tích là \(\frac{{MB}}{2}.\left( {MN + BC} \right)\)
* \(AH \bot MN,AH \bot BM,MN//AD \Rightarrow AH\) là khoảng cách từ \(AD\) đến \(\left( P \right) \Rightarrow AH = h\)
Đặt \(AM = x\left( {0 < x < 3a} \right) \Rightarrow SM = 3a - x.\) Ta có: \(\frac{{MN}}{{AD}} = \frac{{SM}}{{SA}}\) (do \(MN//AD).\)
\( \Rightarrow \frac{{MN}}{a} = \frac{{3a - x}}{{3a}} \Rightarrow MN = \frac{{3a - x}}{3},\) mà \(MB = \sqrt {A{B^2} + A{M^2}} = \sqrt {{a^2} + {x^2}} \)
Diện tích thiết diện là \(\frac{{2\sqrt 5 {a^2}}}{3} \Rightarrow \frac{{\sqrt {{a^2} + {x^2}} }}{2}.\left( {\frac{{3a - x}}{3} + a} \right) = \frac{{2\sqrt 5 {a^2}}}{3}\)
\( \Leftrightarrow \sqrt {{a^2} + {x^2}} .\left( {6a - x} \right) = 4\sqrt 5 {a^2} \Leftrightarrow \left( {{a^2} + {x^2}} \right)\left( {36{a^2} - 12ax + {x^2}} \right) = 80{a^4}\)
\( \Leftrightarrow 36{a^4} - 12{a^3}x + {a^2}{x^2} + 36{a^2}{x^2} - 12a{x^3} + {x^4} - 80{a^4} = 0\)
\( \Leftrightarrow {x^4} - 12{x^3}x + 37{x^2}{a^2} - 12a{x^3} - 44{a^4} = 0 \Rightarrow x = 2a\)
\( \Rightarrow MB = a\sqrt 5 \Rightarrow h = AH = \frac{{AM.AB}}{{MB}} = \frac{{2a.a}}{{a\sqrt 5 }} = \frac{{2a}}{{\sqrt 5 }} = \frac{{2\sqrt 5 a}}{5}\)
Vậy khoảng cách \(h\) giữa đường thẳng \(AD\) và mặt phẳng \(\left( P \right)\) là \(\frac{{2\sqrt 5 a}}{5}.\)
Đáp án B
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0.\)
Gọi \({x_1}\) và \({x_2}\) lần lượt là hai điểm cực trị của hàm số đã cho \(\left( {{x_1} < {x_2}} \right).\)
Từ đồ thị ta thấy: \({x_1} + {x_2} >0 \Rightarrow ab < 0 \Rightarrow b >0.\)</>
Và: \({x_1}.{x_2} >0 \Rightarrow ac >0 \Rightarrow c >0.\)
Đồ thị hàm số giao với trục tung tại điểm có tung độ \(y \Rightarrow d >0.\)
Vậy trong các số \(a,b,c,d\) có hai số dương.
Đáp án D
Lời giải
Tập xác định \(D = \mathbb{R}\)
\(y' = 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5\)
Hàm số đồng biến trong khoảng \(\left( {2; + \infty } \right)\) khi \(y' \ge 0,\forall x \in \left( {2; + \infty } \right).\)
\( \Leftrightarrow 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0\forall x \in \left( {2; + \infty } \right).\)
\(3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0 \Leftrightarrow m \le \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right)\)
Xét hàm số \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right).\)
\(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} >0,\forall x \in \left( {2; + \infty } \right) \Rightarrow \) Hàm số \(g\left( x \right)\) đồng biến trong khoảng \(\left( {2; + \infty } \right).\)
Do đó: \(m \le g\left( x \right),\forall x \in \left( {2; + \infty } \right) \Rightarrow m \le g\left( 2 \right) \Leftrightarrow m \le \frac{5}{{12}}.\)
Vì \(0 < m \le \frac{5}{{12}}.\) Do đó không có giá trị nguyên dương nào của \(m\) thỏa mãn bài toán.
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận