Câu hỏi:
27/04/2022 647Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SAvuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = 3a.\) Mặt phẳng \(\left( P \right)\) chứa cạnh BCvà cắt hình chóp S.ABCDtheo thiết diện là một tứ giác có diện tích \(\frac{{2\sqrt 5 {a^2}}}{3}.\) Tính khoảng cách \(h\) giữa đường thẳng \(AD\) và mặt phẳng \(\left( P \right).\)
Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).
Quảng cáo
Trả lời:
Gọi \(M,N\) lần lượt là giao điểm của \(\left( P \right)\) với \(SA,SD \Rightarrow MN//AD;\) kẻ \(AH \bot BM\) tại H
\(AD \bot SA;AD \bot AB \Rightarrow AD \bot \left( {SAB} \right) \Rightarrow MN \bot \left( {SAB} \right) \Rightarrow MN \bot MB\) và \(MN \bot AH\)
* \(MN \bot MB \Rightarrow \) Thiết diện là hình thang vuông \(BMNC\) có diện tích là \(\frac{{MB}}{2}.\left( {MN + BC} \right)\)
* \(AH \bot MN,AH \bot BM,MN//AD \Rightarrow AH\) là khoảng cách từ \(AD\) đến \(\left( P \right) \Rightarrow AH = h\)
Đặt \(AM = x\left( {0 < x < 3a} \right) \Rightarrow SM = 3a - x.\) Ta có: \(\frac{{MN}}{{AD}} = \frac{{SM}}{{SA}}\) (do \(MN//AD).\)
\( \Rightarrow \frac{{MN}}{a} = \frac{{3a - x}}{{3a}} \Rightarrow MN = \frac{{3a - x}}{3},\) mà \(MB = \sqrt {A{B^2} + A{M^2}} = \sqrt {{a^2} + {x^2}} \)
Diện tích thiết diện là \(\frac{{2\sqrt 5 {a^2}}}{3} \Rightarrow \frac{{\sqrt {{a^2} + {x^2}} }}{2}.\left( {\frac{{3a - x}}{3} + a} \right) = \frac{{2\sqrt 5 {a^2}}}{3}\)
\( \Leftrightarrow \sqrt {{a^2} + {x^2}} .\left( {6a - x} \right) = 4\sqrt 5 {a^2} \Leftrightarrow \left( {{a^2} + {x^2}} \right)\left( {36{a^2} - 12ax + {x^2}} \right) = 80{a^4}\)
\( \Leftrightarrow 36{a^4} - 12{a^3}x + {a^2}{x^2} + 36{a^2}{x^2} - 12a{x^3} + {x^4} - 80{a^4} = 0\)
\( \Leftrightarrow {x^4} - 12{x^3}x + 37{x^2}{a^2} - 12a{x^3} - 44{a^4} = 0 \Rightarrow x = 2a\)
\( \Rightarrow MB = a\sqrt 5 \Rightarrow h = AH = \frac{{AM.AB}}{{MB}} = \frac{{2a.a}}{{a\sqrt 5 }} = \frac{{2a}}{{\sqrt 5 }} = \frac{{2\sqrt 5 a}}{5}\)
Vậy khoảng cách \(h\) giữa đường thẳng \(AD\) và mặt phẳng \(\left( P \right)\) là \(\frac{{2\sqrt 5 a}}{5}.\)
Đáp án B
Đã bán 189
Đã bán 187
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\)
Câu 2:
Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = {x^3} - 3\left( {2m + 1} \right){x^2} + \left( {12m + 5} \right)x + 2\) đồng biến trên khoảng \(\left( {2; + \infty } \right).\) Số phần tử của \(S\) bằng
Câu 3:
Cho các số dương \(a,b,c\) khác 1 thỏa mãn \({\log _a}\left( {bc} \right) = 3,{\log _b}\left( {ca} \right) = 4.\) Tính giá trị của \({\log _c}\left( {ab} \right).\)
Câu 4:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh \(a,\) cạnh bên SA vuông góc với mặt phẳng đáy và \(SA = a\sqrt 2 .\) Thể tích của khối chóp \(S.ABCD\) bằng
Câu 5:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = a,\) góc \(BAC = {120^0},AA' = a.\) Gọi \(M,N\) lần lượt là trung điểm của \(B'C'\) và \(CC'.\) Số đo góc giữa mặt phẳng \(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng
Câu 6:
Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = OB = OC = a.\) Khi đó thể tích của khối tứ diện \(OABC\) là
Câu 7:
Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a \ne 0} \right)\) có đồ thị của đạo hàm \(f'\left( x \right)\) như hình vẽ. Biết rằng \(e >n.\)
Số điểm cực trị của hàm số \(y = f'\left( {f\left( x \right) - 2x} \right)\) là
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
50 bài tập Hình học không gian có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận