Câu hỏi:

27/04/2022 2,200

Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong \(t\) giờ được cho bởi công thức \(c\left( t \right) = \frac{t}{{{t^2} + 1}}\left( {mg/L} \right).\) Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số \(f\left( t \right) = \frac{t}{{{t^2} + 1}}\) trên khoảng \(\left( {0; + \infty } \right).\)

Có: \(f'\left( t \right) = \frac{{1 - {t^2}}}{{{{\left( {{t^2} + 1} \right)}^2}}},f'\left( t \right) = 0 \Leftrightarrow 1 - {t^2} = 0 \Leftrightarrow t = \pm 1\)

Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong \(t (ảnh 1)

Từ bảng biến thiên trên suy ra sau khi tiêm thuốc 1 giờ thif tổng nồng độ thuốc trong máu của bệnh nhân cao nhất.

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0.\)

Gọi \({x_1}\) và \({x_2}\) lần lượt là hai điểm cực trị của hàm số đã cho \(\left( {{x_1} < {x_2}} \right).\)

Từ đồ thị ta thấy: \({x_1} + {x_2} >0 \Rightarrow ab < 0 \Rightarrow b >0.\)</>

Và: \({x_1}.{x_2} >0 \Rightarrow ac >0 \Rightarrow c >0.\)

Đồ thị hàm số giao với trục tung tại điểm có tung độ \(y \Rightarrow d >0.\)

Vậy trong các số \(a,b,c,d\) có hai số dương.

Đáp án D

Lời giải

Tập xác định \(D = \mathbb{R}\)

\(y' = 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5\)

Hàm số đồng biến trong khoảng \(\left( {2; + \infty } \right)\) khi \(y' \ge 0,\forall x \in \left( {2; + \infty } \right).\)

\( \Leftrightarrow 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0\forall x \in \left( {2; + \infty } \right).\)

\(3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0 \Leftrightarrow m \le \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right)\)

Xét hàm số \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right).\)

\(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} >0,\forall x \in \left( {2; + \infty } \right) \Rightarrow \) Hàm số \(g\left( x \right)\) đồng biến trong khoảng \(\left( {2; + \infty } \right).\)

Do đó: \(m \le g\left( x \right),\forall x \in \left( {2; + \infty } \right) \Rightarrow m \le g\left( 2 \right) \Leftrightarrow m \le \frac{5}{{12}}.\)

Vì \(0 < m \le \frac{5}{{12}}.\) Do đó không có giá trị nguyên dương nào của \(m\) thỏa mãn bài toán.

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP