Câu hỏi:
27/04/2022 332Cho hình chóp \(S.ABC\) có \(SA = SB = SC = 3,\) tam giác \(ABC\) vuông cân tại \(B\) và \[AC = 2\sqrt 2 .\] Gọi \(M,N\) lần lượt là trung điểm của \(AC\) và \(BC.\) Trên hai cạnh \(SA,SB\) lấy các điểm \(P,Q\) tương ứng sao cho \(SP = 1,SQ = 2.\) Tính thể tích \(V\) của tứ diện \(MNPQ.\)
Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).
Quảng cáo
Trả lời:
Gọi \(I\) là giao điểm của \(PQ\) và \(AB\)
\({V_{MNPQ}} = {V_{I.MPN}} - {V_{I.QMN}} = {V_{P.MNI}} - {V_{Q.MNI}}.\)
Tính diện tích \(\Delta MNI\)
\(MN = 1\)
Gọi \(E\) là trung điểm của \(SQ \Rightarrow PE//AB\) và \(PE = \frac{1}{3}AB\)
Ta có \(\Delta PEQ = \Delta IBQ\left( {g.c.g} \right) \Rightarrow PE = IB\)
\( \Rightarrow IB = \frac{1}{3}AB = \frac{2}{3}.\)
\(I{N^2} = B{N^2} + I{B^2} = 1 + \frac{4}{9} = \frac{{13}}{9} \Rightarrow IN = \frac{{\sqrt {13} }}{3}.\)
Áp dụng định lý cosin cho tam giác \(IAM\) có:
\(IM = I{A^2} + A{M^2} - 2IA.AM.\cos {45^0}\)
\( = {\left( {\frac{8}{3}} \right)^2} + {\left( {\sqrt 2 } \right)^2} - 2.\frac{8}{3}.\sqrt 2 .\frac{{\sqrt 2 }}{2} = \frac{{34}}{9} \Rightarrow IM = \frac{{\sqrt {34} }}{9}.\)
\(\cos \widehat {MNI} = \frac{{M{N^2} + I{N^2} - M{I^2}}}{{2.MN.IN}} = \frac{{1 + \frac{{13}}{9} - \frac{{34}}{9}}}{{2.1.\frac{{\sqrt {13} }}{3}}} = \frac{{ - 2\sqrt {13} }}{{13}}.\)
\(\sin \widehat {MNI} = \sqrt {1 - {{\cos }^2}\widehat {MNI}} = \frac{3}{{\sqrt {13} }}.\)
\({S_{MNI}} = \frac{1}{2}.MN.NI.\sin \widehat {MNI} = \frac{1}{2}.1.\frac{{\sqrt {13} }}{3}.\frac{3}{{\sqrt {13} }} = \frac{1}{2}.\)
\({V_{MNPQ}} = \frac{1}{3}.d\left( {P;\left( {MIN} \right)} \right).{S_{MIN}} - \frac{1}{3}.d\left( {Q;\left( {MIN} \right)} \right).{S_{MIN}}\)
\( = \frac{1}{3}.\frac{2}{3}d\left( {S;\left( {MIN} \right)} \right).{S_{MIN}} - \frac{1}{3}.\frac{1}{3}.d\left( {S;\left( {MIN} \right)} \right).{S_{MIN}}\)
\( = \frac{1}{3}.\frac{1}{3}d\left( {S;\left( {MIN} \right)} \right).{S_{MIN}} = \frac{1}{9}d\left( {S;\left( {ABC} \right)} \right).{S_{MIN}}\)
Vì \(SA = SB = SC\) nên hình chiếu của đỉnh \(S\) trên mặt phẳng \(\left( {ABC} \right)\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\)
Mà tam giác \(ABC\) vuông tại B nên tam đường tròn ngoại tiếp tam giác \(ABC\) chính là điểm \(M\).
Vậy \({V_{MNPQ}} = \frac{1}{9}.\sqrt 7 .\frac{1}{2} = \frac{{\sqrt 7 }}{{18}}.\)
Đáp án A
Đã bán 1,3k
Đã bán 386
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d?\)
Câu 2:
Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = {x^3} - 3\left( {2m + 1} \right){x^2} + \left( {12m + 5} \right)x + 2\) đồng biến trên khoảng \(\left( {2; + \infty } \right).\) Số phần tử của \(S\) bằng
Câu 3:
Cho các số dương \(a,b,c\) khác 1 thỏa mãn \({\log _a}\left( {bc} \right) = 3,{\log _b}\left( {ca} \right) = 4.\) Tính giá trị của \({\log _c}\left( {ab} \right).\)
Câu 4:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh \(a,\) cạnh bên SA vuông góc với mặt phẳng đáy và \(SA = a\sqrt 2 .\) Thể tích của khối chóp \(S.ABCD\) bằng
Câu 5:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = a,\) góc \(BAC = {120^0},AA' = a.\) Gọi \(M,N\) lần lượt là trung điểm của \(B'C'\) và \(CC'.\) Số đo góc giữa mặt phẳng \(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng
Câu 6:
Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = OB = OC = a.\) Khi đó thể tích của khối tứ diện \(OABC\) là
Câu 7:
Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a \ne 0} \right)\) có đồ thị của đạo hàm \(f'\left( x \right)\) như hình vẽ. Biết rằng \(e >n.\)
Số điểm cực trị của hàm số \(y = f'\left( {f\left( x \right) - 2x} \right)\) là
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
50 bài tập Hình học không gian có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận