Câu hỏi:
27/04/2022 363Cho hình chóp \(S.ABC\) có \(SA = SB = SC = 3,\) tam giác \(ABC\) vuông cân tại \(B\) và \[AC = 2\sqrt 2 .\] Gọi \(M,N\) lần lượt là trung điểm của \(AC\) và \(BC.\) Trên hai cạnh \(SA,SB\) lấy các điểm \(P,Q\) tương ứng sao cho \(SP = 1,SQ = 2.\) Tính thể tích \(V\) của tứ diện \(MNPQ.\)
Quảng cáo
Trả lời:
Gọi \(I\) là giao điểm của \(PQ\) và \(AB\)
\({V_{MNPQ}} = {V_{I.MPN}} - {V_{I.QMN}} = {V_{P.MNI}} - {V_{Q.MNI}}.\)
Tính diện tích \(\Delta MNI\)
\(MN = 1\)
Gọi \(E\) là trung điểm của \(SQ \Rightarrow PE//AB\) và \(PE = \frac{1}{3}AB\)
Ta có \(\Delta PEQ = \Delta IBQ\left( {g.c.g} \right) \Rightarrow PE = IB\)
\( \Rightarrow IB = \frac{1}{3}AB = \frac{2}{3}.\)
\(I{N^2} = B{N^2} + I{B^2} = 1 + \frac{4}{9} = \frac{{13}}{9} \Rightarrow IN = \frac{{\sqrt {13} }}{3}.\)
Áp dụng định lý cosin cho tam giác \(IAM\) có:
\(IM = I{A^2} + A{M^2} - 2IA.AM.\cos {45^0}\)
\( = {\left( {\frac{8}{3}} \right)^2} + {\left( {\sqrt 2 } \right)^2} - 2.\frac{8}{3}.\sqrt 2 .\frac{{\sqrt 2 }}{2} = \frac{{34}}{9} \Rightarrow IM = \frac{{\sqrt {34} }}{9}.\)
\(\cos \widehat {MNI} = \frac{{M{N^2} + I{N^2} - M{I^2}}}{{2.MN.IN}} = \frac{{1 + \frac{{13}}{9} - \frac{{34}}{9}}}{{2.1.\frac{{\sqrt {13} }}{3}}} = \frac{{ - 2\sqrt {13} }}{{13}}.\)
\(\sin \widehat {MNI} = \sqrt {1 - {{\cos }^2}\widehat {MNI}} = \frac{3}{{\sqrt {13} }}.\)
\({S_{MNI}} = \frac{1}{2}.MN.NI.\sin \widehat {MNI} = \frac{1}{2}.1.\frac{{\sqrt {13} }}{3}.\frac{3}{{\sqrt {13} }} = \frac{1}{2}.\)
\({V_{MNPQ}} = \frac{1}{3}.d\left( {P;\left( {MIN} \right)} \right).{S_{MIN}} - \frac{1}{3}.d\left( {Q;\left( {MIN} \right)} \right).{S_{MIN}}\)
\( = \frac{1}{3}.\frac{2}{3}d\left( {S;\left( {MIN} \right)} \right).{S_{MIN}} - \frac{1}{3}.\frac{1}{3}.d\left( {S;\left( {MIN} \right)} \right).{S_{MIN}}\)
\( = \frac{1}{3}.\frac{1}{3}d\left( {S;\left( {MIN} \right)} \right).{S_{MIN}} = \frac{1}{9}d\left( {S;\left( {ABC} \right)} \right).{S_{MIN}}\)
Vì \(SA = SB = SC\) nên hình chiếu của đỉnh \(S\) trên mặt phẳng \(\left( {ABC} \right)\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\)
Mà tam giác \(ABC\) vuông tại B nên tam đường tròn ngoại tiếp tam giác \(ABC\) chính là điểm \(M\).
Vậy \({V_{MNPQ}} = \frac{1}{9}.\sqrt 7 .\frac{1}{2} = \frac{{\sqrt 7 }}{{18}}.\)
Đáp án A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0.\)
Gọi \({x_1}\) và \({x_2}\) lần lượt là hai điểm cực trị của hàm số đã cho \(\left( {{x_1} < {x_2}} \right).\)
Từ đồ thị ta thấy: \({x_1} + {x_2} >0 \Rightarrow ab < 0 \Rightarrow b >0.\)</>
Và: \({x_1}.{x_2} >0 \Rightarrow ac >0 \Rightarrow c >0.\)
Đồ thị hàm số giao với trục tung tại điểm có tung độ \(y \Rightarrow d >0.\)
Vậy trong các số \(a,b,c,d\) có hai số dương.
Đáp án D
Lời giải
Tập xác định \(D = \mathbb{R}\)
\(y' = 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5\)
Hàm số đồng biến trong khoảng \(\left( {2; + \infty } \right)\) khi \(y' \ge 0,\forall x \in \left( {2; + \infty } \right).\)
\( \Leftrightarrow 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0\forall x \in \left( {2; + \infty } \right).\)
\(3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0 \Leftrightarrow m \le \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right)\)
Xét hàm số \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right).\)
\(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} >0,\forall x \in \left( {2; + \infty } \right) \Rightarrow \) Hàm số \(g\left( x \right)\) đồng biến trong khoảng \(\left( {2; + \infty } \right).\)
Do đó: \(m \le g\left( x \right),\forall x \in \left( {2; + \infty } \right) \Rightarrow m \le g\left( 2 \right) \Leftrightarrow m \le \frac{5}{{12}}.\)
Vì \(0 < m \le \frac{5}{{12}}.\) Do đó không có giá trị nguyên dương nào của \(m\) thỏa mãn bài toán.
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận