Câu hỏi:
27/04/2022 720Cho một đa giác đều có 18 đỉnh nội tiếp đường tròn tâm \(O.\) Gọi \(X\) là tập hợp tất cả các tam giác có 3 đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho. Chọn 1 tam giác trong tập hợp \(X.\) Xác suất để tam giác được chọn là tam giác cân bằng
Quảng cáo
Trả lời:
Chọn ngẫu nhiên 3 trong số 18 đỉnh của đa giác ta được 1 tam giác nên \(n\left( \Omega \right) = C_{18}^3 = 816.\)
Vì đa giác đã cho là đa giác đều có 18 đỉnh nên từ mỗi đỉnh có thể tìm ra 8 cặp điểm để cùng với nó tạo ra 1 tam giác cân, trong đó có 1 tam giác đều. Từ 18 đỉnh của đa giác đều có thể tạo ra 6 tam giác đều. Vậy số tam giác cân và đều mà 18 đỉnh của đa giác đều đó tạo ra là: \(18.7 + 6 = 132\)
Xác suất cần tìm là:
Đáp án D
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0.\)
Gọi \({x_1}\) và \({x_2}\) lần lượt là hai điểm cực trị của hàm số đã cho \(\left( {{x_1} < {x_2}} \right).\)
Từ đồ thị ta thấy: \({x_1} + {x_2} >0 \Rightarrow ab < 0 \Rightarrow b >0.\)</>
Và: \({x_1}.{x_2} >0 \Rightarrow ac >0 \Rightarrow c >0.\)
Đồ thị hàm số giao với trục tung tại điểm có tung độ \(y \Rightarrow d >0.\)
Vậy trong các số \(a,b,c,d\) có hai số dương.
Đáp án D
Lời giải
Tập xác định \(D = \mathbb{R}\)
\(y' = 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5\)
Hàm số đồng biến trong khoảng \(\left( {2; + \infty } \right)\) khi \(y' \ge 0,\forall x \in \left( {2; + \infty } \right).\)
\( \Leftrightarrow 3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0\forall x \in \left( {2; + \infty } \right).\)
\(3{x^2} - 6\left( {2m + 1} \right)x + 12m + 5 \ge 0 \Leftrightarrow m \le \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right)\)
Xét hàm số \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}},\forall x \in \left( {2; + \infty } \right).\)
\(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} >0,\forall x \in \left( {2; + \infty } \right) \Rightarrow \) Hàm số \(g\left( x \right)\) đồng biến trong khoảng \(\left( {2; + \infty } \right).\)
Do đó: \(m \le g\left( x \right),\forall x \in \left( {2; + \infty } \right) \Rightarrow m \le g\left( 2 \right) \Leftrightarrow m \le \frac{5}{{12}}.\)
Vì \(0 < m \le \frac{5}{{12}}.\) Do đó không có giá trị nguyên dương nào của \(m\) thỏa mãn bài toán.
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận