Câu hỏi:

15/06/2022 458 Lưu

Cho khối lăng trụ đều \(ABC.A'B'C'\) có cạnh đáy và cạnh bên cùng bằng \(a.\) Tính thể tích của khối lăng trụ đó theo \(a.\) 

A.\(\frac{{{a^3}\sqrt 3 }}{4}.\) 

B.\(\frac{{{a^3}\sqrt 6 }}{4}.\)

C.\(\frac{{{a^3}\sqrt 3 }}{{12}}.\)

D. \(\frac{{{a^3}\sqrt 6 }}{{12}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì \(ABC.A'B'C'\) là khối lăng trụ đều nên có đáy \(ABC\) là tam giác đều và chiều cao \(AA' = a.\)

Khi đó thể tích của khối lăng trụ đã cho là \(V = AA'.{S_{ABC}} = a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{4}\) (đvtt).

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\(x = 7.\)

B.\(x = 2.\)

C.\(x = - 2.\)

D. \(x = 8.\)

Lời giải

ĐKXĐ: \(x + 1 >0 \Leftrightarrow x >- 1.\)

Ta có: \({\log _2}\left( {x + 1} \right) = 3 \Leftrightarrow x + 1 = {2^3} = 8 \Leftrightarrow x = 7\) (thỏa mãn ĐKXĐ).

Vậy nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là \(x = 7.\)

Đáp án A

Lời giải

Mỗi cách sắp xếp 5 học sinh là một hoán vị của 5 phần tử.

Vậy có 5! = 120 cách sắp xếp 5 học sinh thành một hàng dọc.

Đáp án B

Câu 3

A.\(S = \left\{ {0; - 1} \right\}.\) 

B.\(S = \left\{ { - 1} \right\}.\)

C.\(S = \left\{ {0;1} \right\}.\)

D.\(S = \left\{ 1 \right\}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.\({a^3}\sqrt 3 .\)

B.\(\frac{{{a^3}\sqrt 3 }}{3}.\)

C.\(\frac{{{a^3}\sqrt 3 }}{2}.\)

D. \(\frac{{{a^3}\sqrt 3 }}{6}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP