Câu hỏi:

15/06/2022 197

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right)\) trên khoảng \(\left( {0; + \infty } \right).\) Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập xác định: \(D = \left( {0; + \infty } \right).\)

\(f'\left( x \right) = 0 \Leftrightarrow \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\ln x + 1 = 0\\{e^x} - 2019 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\ln x = - 1\\{e^x} = 2019\\x = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{e} \in \left( {0; + \infty } \right)\\x = \ln 2019 \in \left( {0; + \infty } \right)\\x = - 1 \notin \left( {0; + \infty } \right)\end{array} \right.\)

Bảng biến thiên:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right)\) trên khoảng \(\left( {0; + \infty } \rig (ảnh 1)

Hàm số đạt cực đại tại \(x = \frac{1}{e}.\) Đạt cực tiểu tại \(x = \ln 2019.\)

Vậy trên khoảng \(\left( {0; + \infty } \right)\) thì hàm số \(y = f\left( x \right)\) có 2 điểm cực trị.

Đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là: 

Xem đáp án » 15/06/2022 11,464

Câu 2:

Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

Xem đáp án » 11/04/2022 10,908

Câu 3:

Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)

Xem đáp án » 15/06/2022 4,498

Câu 4:

Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\) 

Xem đáp án » 15/06/2022 4,058

Câu 5:

Cho khối chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B,AB = \sqrt 3 ,BC = 3,SA \bot \left( {ABC} \right)\) và góc giữa \(SC\) với đáy bằng \({45^0}.\) Thể tích của khối chóp \(S.ABC\) bằng 

Xem đáp án » 15/06/2022 3,156

Câu 6:

Trong không gian \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\). Tìm tọa độ đỉnh \(A'\) biết tọa độ các điểm \(A\left( {0;0;0} \right);B\left( {1;0;0} \right);C\left( {1;2;0} \right);D'\left( { - 1;3;5} \right).\) 

Xem đáp án » 15/06/2022 2,770

Câu 7:

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),SA = a\), tam giác \(ABC\) đều có cạnh \(2a.\) Tính thể tích khối chóp \(S.ABC.\) 

Xem đáp án » 15/06/2022 1,547
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay