Câu hỏi:

15/06/2022 212

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right)\) trên khoảng \(\left( {0; + \infty } \right).\) Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập xác định: \(D = \left( {0; + \infty } \right).\)

\(f'\left( x \right) = 0 \Leftrightarrow \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\ln x + 1 = 0\\{e^x} - 2019 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\ln x = - 1\\{e^x} = 2019\\x = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{e} \in \left( {0; + \infty } \right)\\x = \ln 2019 \in \left( {0; + \infty } \right)\\x = - 1 \notin \left( {0; + \infty } \right)\end{array} \right.\)

Bảng biến thiên:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right)\) trên khoảng \(\left( {0; + \infty } \rig (ảnh 1)

Hàm số đạt cực đại tại \(x = \frac{1}{e}.\) Đạt cực tiểu tại \(x = \ln 2019.\)

Vậy trên khoảng \(\left( {0; + \infty } \right)\) thì hàm số \(y = f\left( x \right)\) có 2 điểm cực trị.

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

ĐKXĐ: \(x + 1 >0 \Leftrightarrow x >- 1.\)

Ta có: \({\log _2}\left( {x + 1} \right) = 3 \Leftrightarrow x + 1 = {2^3} = 8 \Leftrightarrow x = 7\) (thỏa mãn ĐKXĐ).

Vậy nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là \(x = 7.\)

Đáp án A

Lời giải

Mỗi cách sắp xếp 5 học sinh là một hoán vị của 5 phần tử.

Vậy có 5! = 120 cách sắp xếp 5 học sinh thành một hàng dọc.

Đáp án B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP