Câu hỏi:

11/04/2022 183

Giá trị nhỏ nhất của hàm số \(y = {x^4} - 20{x^2}\) trên đoạn \(\left[ { - 1;10} \right]\) là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số \(y = {x^4} - 20{x^2}\) liên tục trên \(\left[ { - 1;10} \right]\) và có

\(y' = 4{x^3} - 40x = 4x\left( {{x^2} - 10} \right)\) nên \(y' = 0 \Leftrightarrow 4x\left( {{x^2} - 10} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \sqrt {10} \\x = - \sqrt {10} \left( L \right)\end{array} \right.\)

Mà \(y'\left( { - 1} \right) = - 1,y'\left( 0 \right) = 0,y'\left( {\sqrt {10} } \right) = - 100\) nên giá trị nhỏ nhất của hàm số \(y = {x^4} - 20{x^2}\) trên đoạn \(\left[ { - 1;10} \right]\) là \( - 100.\)

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

Xem đáp án » 11/04/2022 6,938

Câu 2:

Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là: 

Xem đáp án » 15/06/2022 3,639

Câu 3:

Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\) 

Xem đáp án » 15/06/2022 3,603

Câu 4:

Cho khối chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B,AB = \sqrt 3 ,BC = 3,SA \bot \left( {ABC} \right)\) và góc giữa \(SC\) với đáy bằng \({45^0}.\) Thể tích của khối chóp \(S.ABC\) bằng 

Xem đáp án » 15/06/2022 2,756

Câu 5:

Trong không gian \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\). Tìm tọa độ đỉnh \(A'\) biết tọa độ các điểm \(A\left( {0;0;0} \right);B\left( {1;0;0} \right);C\left( {1;2;0} \right);D'\left( { - 1;3;5} \right).\) 

Xem đáp án » 15/06/2022 2,490

Câu 6:

Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)

Xem đáp án » 15/06/2022 1,188

Câu 7:

Biết \(\int\limits_{}^{} {f\left( x \right)dx} = {x^2} + C.\) Tính \(\int\limits_{}^{} {f\left( {2x} \right)dx} .\) 

Xem đáp án » 15/06/2022 979

Bình luận


Bình luận