Câu hỏi:
11/04/2022 146Biết tập nghiệm của bất phương trình \({3^{{x^2} - x}} < 9\) là \(\left( {a;b} \right).\) Tính \(T = a + b.\)
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có: \({3^{{x^2} - x}} < 9 \Leftrightarrow {3^{{x^2} - x}} < {3^2} \Leftrightarrow {x^2} - x < 2 \Leftrightarrow {x^2} - x - 2 < 0 \Leftrightarrow x \in \left( { - 1;2} \right).\)
Vậy \(T = a + b = - 1 + 2 = 1.\)
Đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\)
Câu 3:
Cho khối chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B,AB = \sqrt 3 ,BC = 3,SA \bot \left( {ABC} \right)\) và góc giữa \(SC\) với đáy bằng \({45^0}.\) Thể tích của khối chóp \(S.ABC\) bằng
Câu 4:
Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là:
Câu 5:
Trong không gian \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\). Tìm tọa độ đỉnh \(A'\) biết tọa độ các điểm \(A\left( {0;0;0} \right);B\left( {1;0;0} \right);C\left( {1;2;0} \right);D'\left( { - 1;3;5} \right).\)
Câu 6:
Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)
Câu 7:
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),SA = a\), tam giác \(ABC\) đều có cạnh \(2a.\) Tính thể tích khối chóp \(S.ABC.\)
về câu hỏi!