Câu hỏi:

11/04/2022 704

Cho khối tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và thể tích bằng \(\frac{{{a^3}}}{{4\sqrt 3 }}.\) Tính góc giữa cạnh bên và mặt đáy? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho khối tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và thể tích bằng \(\frac{{{a^3}}}{{4\sqrt 3 }}.\) Tính góc giữa cạnh bên và mặt đáy?  (ảnh 1)

Gọi \(M,G\) lần lượt là trung điểm của \(BC\) và trọng tâm \(\Delta ABC.\)

Do \(S.ABC\) là khối chóp tam giác đều nên hình chiếu của \(S\) lên \(\left( {ABC} \right)\) là trọng tâm \(\Delta ABC.\)

Suy ra \(SG \bot \left( {ABC} \right).\)

Khi đó góc giữa cạnh bên và mặt đáy là \(\widehat {SAG}.\)

Ta có: \(AM = \frac{{a\sqrt 3 }}{2};AG = \frac{2}{3}AM = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3};{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.\)

Theo đề bài: \[{V_{S.ABC}} = \frac{{{a^3}}}{{4\sqrt 3 }} \Leftrightarrow \frac{1}{3}.SG.{S_{\Delta ABC}} = \frac{{{a^3}}}{{4\sqrt 3 }} \Leftrightarrow \frac{1}{3}.SG.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}}}{{4\sqrt 3 }} \Leftrightarrow SG = a.\]

Trong \(\Delta SAG\) vuông tại \(G\) ta có: \(\tan \widehat {SAG} = \frac{{SG}}{{AG}} = \frac{a}{{\frac{{a\sqrt 3 }}{3}}} = \sqrt 3 \Rightarrow \widehat {SAG} = {60^0}.\)

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

ĐKXĐ: \(x + 1 >0 \Leftrightarrow x >- 1.\)

Ta có: \({\log _2}\left( {x + 1} \right) = 3 \Leftrightarrow x + 1 = {2^3} = 8 \Leftrightarrow x = 7\) (thỏa mãn ĐKXĐ).

Vậy nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là \(x = 7.\)

Đáp án A

Lời giải

Mỗi cách sắp xếp 5 học sinh là một hoán vị của 5 phần tử.

Vậy có 5! = 120 cách sắp xếp 5 học sinh thành một hàng dọc.

Đáp án B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP