Câu hỏi:

11/04/2022 258

Cho khối tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và thể tích bằng \(\frac{{{a^3}}}{{4\sqrt 3 }}.\) Tính góc giữa cạnh bên và mặt đáy? 

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho khối tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và thể tích bằng \(\frac{{{a^3}}}{{4\sqrt 3 }}.\) Tính góc giữa cạnh bên và mặt đáy?  (ảnh 1)

Gọi \(M,G\) lần lượt là trung điểm của \(BC\) và trọng tâm \(\Delta ABC.\)

Do \(S.ABC\) là khối chóp tam giác đều nên hình chiếu của \(S\) lên \(\left( {ABC} \right)\) là trọng tâm \(\Delta ABC.\)

Suy ra \(SG \bot \left( {ABC} \right).\)

Khi đó góc giữa cạnh bên và mặt đáy là \(\widehat {SAG}.\)

Ta có: \(AM = \frac{{a\sqrt 3 }}{2};AG = \frac{2}{3}AM = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3};{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.\)

Theo đề bài: \[{V_{S.ABC}} = \frac{{{a^3}}}{{4\sqrt 3 }} \Leftrightarrow \frac{1}{3}.SG.{S_{\Delta ABC}} = \frac{{{a^3}}}{{4\sqrt 3 }} \Leftrightarrow \frac{1}{3}.SG.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}}}{{4\sqrt 3 }} \Leftrightarrow SG = a.\]

Trong \(\Delta SAG\) vuông tại \(G\) ta có: \(\tan \widehat {SAG} = \frac{{SG}}{{AG}} = \frac{a}{{\frac{{a\sqrt 3 }}{3}}} = \sqrt 3 \Rightarrow \widehat {SAG} = {60^0}.\)

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

Xem đáp án » 11/04/2022 6,010

Câu 2:

Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\) 

Xem đáp án » 15/06/2022 3,204

Câu 3:

Cho khối chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B,AB = \sqrt 3 ,BC = 3,SA \bot \left( {ABC} \right)\) và góc giữa \(SC\) với đáy bằng \({45^0}.\) Thể tích của khối chóp \(S.ABC\) bằng 

Xem đáp án » 15/06/2022 2,701

Câu 4:

Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là: 

Xem đáp án » 15/06/2022 2,136

Câu 5:

Trong không gian \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\). Tìm tọa độ đỉnh \(A'\) biết tọa độ các điểm \(A\left( {0;0;0} \right);B\left( {1;0;0} \right);C\left( {1;2;0} \right);D'\left( { - 1;3;5} \right).\) 

Xem đáp án » 15/06/2022 1,994

Câu 6:

Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)

Xem đáp án » 15/06/2022 831

Câu 7:

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),SA = a\), tam giác \(ABC\) đều có cạnh \(2a.\) Tính thể tích khối chóp \(S.ABC.\) 

Xem đáp án » 15/06/2022 783

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store