Câu hỏi:

11/04/2022 650

Cho khối tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và thể tích bằng \(\frac{{{a^3}}}{{4\sqrt 3 }}.\) Tính góc giữa cạnh bên và mặt đáy? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho khối tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và thể tích bằng \(\frac{{{a^3}}}{{4\sqrt 3 }}.\) Tính góc giữa cạnh bên và mặt đáy?  (ảnh 1)

Gọi \(M,G\) lần lượt là trung điểm của \(BC\) và trọng tâm \(\Delta ABC.\)

Do \(S.ABC\) là khối chóp tam giác đều nên hình chiếu của \(S\) lên \(\left( {ABC} \right)\) là trọng tâm \(\Delta ABC.\)

Suy ra \(SG \bot \left( {ABC} \right).\)

Khi đó góc giữa cạnh bên và mặt đáy là \(\widehat {SAG}.\)

Ta có: \(AM = \frac{{a\sqrt 3 }}{2};AG = \frac{2}{3}AM = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3};{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.\)

Theo đề bài: \[{V_{S.ABC}} = \frac{{{a^3}}}{{4\sqrt 3 }} \Leftrightarrow \frac{1}{3}.SG.{S_{\Delta ABC}} = \frac{{{a^3}}}{{4\sqrt 3 }} \Leftrightarrow \frac{1}{3}.SG.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}}}{{4\sqrt 3 }} \Leftrightarrow SG = a.\]

Trong \(\Delta SAG\) vuông tại \(G\) ta có: \(\tan \widehat {SAG} = \frac{{SG}}{{AG}} = \frac{a}{{\frac{{a\sqrt 3 }}{3}}} = \sqrt 3 \Rightarrow \widehat {SAG} = {60^0}.\)

Đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là: 

Lời giải

ĐKXĐ: \(x + 1 >0 \Leftrightarrow x >- 1.\)

Ta có: \({\log _2}\left( {x + 1} \right) = 3 \Leftrightarrow x + 1 = {2^3} = 8 \Leftrightarrow x = 7\) (thỏa mãn ĐKXĐ).

Vậy nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là \(x = 7.\)

Đáp án A

Lời giải

Mỗi cách sắp xếp 5 học sinh là một hoán vị của 5 phần tử.

Vậy có 5! = 120 cách sắp xếp 5 học sinh thành một hàng dọc.

Đáp án B

Câu 3

Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),SA = a\), tam giác \(ABC\) đều có cạnh \(2a.\) Tính thể tích khối chóp \(S.ABC.\) 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay