Câu hỏi:

11/04/2022 151

Cho tứ diện đều \(ABCD\) có cạnh bằng 4. Tính diện tích xung quanh của hình trụ có đường tròn đáy là đường tròn nội tiếp tam giác \(BCD\) và có chiều cao bằng chiều cao của tứ diện đều \(ABCD.\)

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tứ diện đều \(ABCD\) có cạnh bằng 4. Tính diện tích xung quanh của hình trụ có đường tròn đáy là đường tròn nội tiếp tam giác \(BCD\) và có chiều cao bằng chiều cao của tứ diện đều \(ABCD (ảnh 1)

Gọi \(I\) là trung điểm của đoạn thẳng \(CD.\)

Gọi \(H\) là trọng tâm của tam giác đều \(BCD.\) Khi đó \(HI = \frac{{2\sqrt 3 }}{3},BH = \frac{{4\sqrt 3 }}{3}.\)

Gọi \(H\) là trọng tâm của tam giác đều \(BCD\) nên \(H\) là tâm đường tròn nội tiếp tam giác \(BCD\)

Và \(HI\) là bán kính đường tròn nội tiếp tam giác \(BCD.\) Suy ra bán kính đường tròn đáy của hình trụ là \(r = HI = \frac{{2\sqrt 3 }}{3}.\)

Tứ diện \[ABCD\] đều nên \(AH \bot \left( {BCD} \right),\) suy ra \(AH\) là chiều cao của khối tứ diện.

Áp dụng định lý py-ta-go vào tam giác \(AHB\) vuông tại \(H\) ta có

\(A{B^2} = A{H^2} + B{H^2} \Leftrightarrow A{H^2} = A{B^2} - B{H^2} = {4^2} - {\left( {\frac{{4\sqrt 3 }}{3}} \right)^2} = \frac{{32}}{3} \Leftrightarrow AH = \frac{{4\sqrt 6 }}{3}.\)

Vậy chiều cao của hình trụ là \(h = AH = \frac{{4\sqrt 6 }}{3}.\) Suy ra độ dài đường sinh của hình trụ là \(l = \frac{{4\sqrt 6 }}{3}.\) Diện tích xung quanh của hình trụ là \({S_{xq}} = 2\pi rl = 2\pi .\frac{{2\sqrt 3 }}{3}.\frac{{4\sqrt 6 }}{3} = \frac{{16\sqrt 2 }}{3}\pi .\)

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

Xem đáp án » 11/04/2022 5,743

Câu 2:

Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\) 

Xem đáp án » 15/06/2022 3,124

Câu 3:

Cho khối chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B,AB = \sqrt 3 ,BC = 3,SA \bot \left( {ABC} \right)\) và góc giữa \(SC\) với đáy bằng \({45^0}.\) Thể tích của khối chóp \(S.ABC\) bằng 

Xem đáp án » 15/06/2022 2,650

Câu 4:

Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là: 

Xem đáp án » 15/06/2022 1,620

Câu 5:

Trong không gian \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\). Tìm tọa độ đỉnh \(A'\) biết tọa độ các điểm \(A\left( {0;0;0} \right);B\left( {1;0;0} \right);C\left( {1;2;0} \right);D'\left( { - 1;3;5} \right).\) 

Xem đáp án » 15/06/2022 786

Câu 6:

Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)

Xem đáp án » 15/06/2022 762

Câu 7:

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),SA = a\), tam giác \(ABC\) đều có cạnh \(2a.\) Tính thể tích khối chóp \(S.ABC.\) 

Xem đáp án » 15/06/2022 752

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn