Câu hỏi:
11/04/2022 195Cho tứ diện đều \(ABCD\) có cạnh bằng 4. Tính diện tích xung quanh của hình trụ có đường tròn đáy là đường tròn nội tiếp tam giác \(BCD\) và có chiều cao bằng chiều cao của tứ diện đều \(ABCD.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Gọi \(I\) là trung điểm của đoạn thẳng \(CD.\)
Gọi \(H\) là trọng tâm của tam giác đều \(BCD.\) Khi đó \(HI = \frac{{2\sqrt 3 }}{3},BH = \frac{{4\sqrt 3 }}{3}.\)
Gọi \(H\) là trọng tâm của tam giác đều \(BCD\) nên \(H\) là tâm đường tròn nội tiếp tam giác \(BCD\)
Và \(HI\) là bán kính đường tròn nội tiếp tam giác \(BCD.\) Suy ra bán kính đường tròn đáy của hình trụ là \(r = HI = \frac{{2\sqrt 3 }}{3}.\)
Tứ diện \[ABCD\] đều nên \(AH \bot \left( {BCD} \right),\) suy ra \(AH\) là chiều cao của khối tứ diện.
Áp dụng định lý py-ta-go vào tam giác \(AHB\) vuông tại \(H\) ta có
\(A{B^2} = A{H^2} + B{H^2} \Leftrightarrow A{H^2} = A{B^2} - B{H^2} = {4^2} - {\left( {\frac{{4\sqrt 3 }}{3}} \right)^2} = \frac{{32}}{3} \Leftrightarrow AH = \frac{{4\sqrt 6 }}{3}.\)
Vậy chiều cao của hình trụ là \(h = AH = \frac{{4\sqrt 6 }}{3}.\) Suy ra độ dài đường sinh của hình trụ là \(l = \frac{{4\sqrt 6 }}{3}.\) Diện tích xung quanh của hình trụ là \({S_{xq}} = 2\pi rl = 2\pi .\frac{{2\sqrt 3 }}{3}.\frac{{4\sqrt 6 }}{3} = \frac{{16\sqrt 2 }}{3}\pi .\)
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là:
Câu 3:
Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\)
Câu 4:
Cho khối chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B,AB = \sqrt 3 ,BC = 3,SA \bot \left( {ABC} \right)\) và góc giữa \(SC\) với đáy bằng \({45^0}.\) Thể tích của khối chóp \(S.ABC\) bằng
Câu 5:
Trong không gian \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\). Tìm tọa độ đỉnh \(A'\) biết tọa độ các điểm \(A\left( {0;0;0} \right);B\left( {1;0;0} \right);C\left( {1;2;0} \right);D'\left( { - 1;3;5} \right).\)
Câu 6:
Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)
Câu 7:
Biết \(\int\limits_{}^{} {f\left( x \right)dx} = {x^2} + C.\) Tính \(\int\limits_{}^{} {f\left( {2x} \right)dx} .\)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận