Câu hỏi:
11/04/2022 583Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 1} \right)^2}\left( {{x^2} - 2x} \right),\) với mọi \(x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = f\left( {{x^2} - 8x + m} \right)\) có 5 điểm cực trị?
Quảng cáo
Trả lời:
Ta có \(y' = \left( {2x - 8} \right)f'\left( {{x^2} - 8x + m} \right).\) Hàm số \(y = f\left( {{x^2} - 8x + m} \right)\) có 5 điểm cực trị khi và chỉ khi phương trình \(f'\left( {{x^2} - 8x + m} \right) = 0\) có bốn nghiệm phân biệt khác 4. Mà \(f'\left( x \right) = 0\) có hai nghiệm đơn là \(x = 0\) và \(x = 2\) nên \(f'\left( {{x^2} - 8x + m} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} - 8x + m = 0\\{x^2} - 8x + m = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^2} - 8x + m = 0\\{x^2} - 8x + m - 2 = 0\end{array} \right.\) có bốn nghiệm phân biệt khác 4 khi và chỉ khi \(\left\{ \begin{array}{l}\Delta ' = 16 - m >0\\16 - 32 + m \ne 0\\\Delta ' = 16 - m + 2 >0\\16 - 32 + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 16\\m \ne 16\\m < 18\\m \ne 18\end{array} \right. \Leftrightarrow m < 16.\)
Kết hợp điều kiện \(m\) nguyên dương nên có 15 giá trị nguyên của tham số \(m\) thỏa mãn bài ra.
Đáp án D
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
ĐKXĐ: \(x + 1 >0 \Leftrightarrow x >- 1.\)
Ta có: \({\log _2}\left( {x + 1} \right) = 3 \Leftrightarrow x + 1 = {2^3} = 8 \Leftrightarrow x = 7\) (thỏa mãn ĐKXĐ).
Vậy nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là \(x = 7.\)
Đáp án A
Lời giải
Mỗi cách sắp xếp 5 học sinh là một hoán vị của 5 phần tử.
Vậy có 5! = 120 cách sắp xếp 5 học sinh thành một hàng dọc.
Đáp án B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.