Câu hỏi:

11/04/2022 300

Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(a.\) Trên các tia \(AA',BB',CC'\) lần lượt lấy \({A_1},{B_1},{C_1}\) cách mặt phẳng đáy \(\left( {ABC} \right)\) một khoảng lần lượt là \(\frac{a}{2},a,\frac{{3a}}{2}.\) Tính góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {{A_1}{B_1}{C_1}} \right).\) 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
 Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(a.\) Trên các tia \(AA',BB',CC'\) lần lượt lấy \({A_1},{B_1},{C_1}\) cách mặt phẳng đáy \(\left( {ABC} \right)\) một khoảng lần lư (ảnh 1)

Từ \({B_1}\) dựng mặt phẳng song song với \(\left( {ABC} \right)\) cắt \(AA'\) và \(CC'\) tại \({A_2},{C_2}.\)

Ta có \({A_1}{A_2} = B{B_1} - A{A_1} = \frac{a}{2} \Rightarrow {A_1}{B_1} = \sqrt {{A_1}A_2^2 + {A_2}{B_1}} = \sqrt {{a^2} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt 5 }}{2},\) tương tự \({B_1}{C_1} = \frac{{a\sqrt 5 }}{2},{A_1}{C_1} = a\sqrt 2 .\) Vậy tam giác \({A_1}{B_1}{C_1}\) cân tại \({B_1}.\)

Khi đó đường cao ứng với đỉnh \({B_1}\) của tam giác \({A_1}{B_1}{C_1}\) là \(\sqrt {{B_1}C_1^2 - \frac{{{A_1}C_1^2}}{4}} = \frac{{a\sqrt 3 }}{2}\)

\({S_{\Delta {A_1}{B_1}{C_1}}} = \frac{{{a^2}\sqrt 6 }}{4};{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4},\) mặt khác tam giác \(ABC\) là hình chiếu của tam giác \({A_1}{B_1}{C_1}\) trên mặt phẳng \(\left( {ABC} \right).\)

Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {{A_1}{B_1}{C_1}} \right).\)

Ta có \(\cos \varphi = \frac{{{S_{\Delta ABC}}}}{{{S_{{A_1}{B_1}{C_1}}}}} = \frac{{\sqrt 2 }}{2} \Rightarrow \varphi = {45^0}.\)

Đáp án C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là: 

Xem đáp án » 15/06/2022 11,426

Câu 2:

Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

Xem đáp án » 11/04/2022 10,899

Câu 3:

Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)

Xem đáp án » 15/06/2022 4,496

Câu 4:

Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\) 

Xem đáp án » 15/06/2022 4,056

Câu 5:

Cho khối chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B,AB = \sqrt 3 ,BC = 3,SA \bot \left( {ABC} \right)\) và góc giữa \(SC\) với đáy bằng \({45^0}.\) Thể tích của khối chóp \(S.ABC\) bằng 

Xem đáp án » 15/06/2022 3,152

Câu 6:

Trong không gian \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\). Tìm tọa độ đỉnh \(A'\) biết tọa độ các điểm \(A\left( {0;0;0} \right);B\left( {1;0;0} \right);C\left( {1;2;0} \right);D'\left( { - 1;3;5} \right).\) 

Xem đáp án » 15/06/2022 2,767

Câu 7:

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),SA = a\), tam giác \(ABC\) đều có cạnh \(2a.\) Tính thể tích khối chóp \(S.ABC.\) 

Xem đáp án » 15/06/2022 1,544
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay