Câu hỏi:

11/04/2022 173

Gọi \(a\) là số thực lớn nhất để bất phương trình \({x^2} - x + 2 + a\ln \left( {{x^2} - x + 1} \right) \ge 0\) nghiệm đúng với mọi \(x \in \mathbb{R}.\) Mệnh đề nào sau đây đúng? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với \(a = 0\) có \({x^2} - x + 2 + a\ln \left( {{x^2} - x + 1} \right) \ge 0 \Leftrightarrow {x^2} - x + 2 \ge 0,\forall x \in \mathbb{R}\) suy ra \(a = 0\) thỏa mãn.

Vậy ta chỉ cần tìm các giá trị \(a >0.\)

Đặt \(t = {x^2} - x + 1,\) có \(t \ge \frac{3}{4}.\)

Bất phương trình đưa về tìm \(a >0\) để \(t + 1 + a\ln t \ge 0,\forall t \ge \frac{3}{4}.\)

Đặt \(f\left( t \right) = t + 1 + a\ln t\) có \(f'\left( t \right) = 1 + \frac{a}{t} >0,\forall a >0,t \ge \frac{3}{4}.\)

Bảng biến thiên

Gọi \(a\) là số thực lớn nhất để bất phương trình \({x^2} - x + 2 + a\ln \left( {{x^2} - x + 1} \right) \ge 0\) nghiệm đúng với mọi \(x \in \mathbb{R}.\) Mệnh đề nào sau đây đúng?  (ảnh 1)

Có \(f\left( t \right) \ge 0,\forall t \ge \frac{3}{4}\) khi và chỉ khi \(\frac{7}{4} + a\ln \frac{3}{4} \ge 0 \Leftrightarrow a \le \frac{{ - 7}}{{4\ln \frac{3}{4}}} \approx 6,08 \Rightarrow a \in \left( {6;7} \right].\)

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

ĐKXĐ: \(x + 1 >0 \Leftrightarrow x >- 1.\)

Ta có: \({\log _2}\left( {x + 1} \right) = 3 \Leftrightarrow x + 1 = {2^3} = 8 \Leftrightarrow x = 7\) (thỏa mãn ĐKXĐ).

Vậy nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là \(x = 7.\)

Đáp án A

Lời giải

Mỗi cách sắp xếp 5 học sinh là một hoán vị của 5 phần tử.

Vậy có 5! = 120 cách sắp xếp 5 học sinh thành một hàng dọc.

Đáp án B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP