Câu hỏi:

11/04/2022 222

Biết rằng \[a\] là số thực dương để bất phương trình \[{a^x} \ge 9x + 1\] nghiệm đúng với mọi \[x \in \mathbb{R}\]. Mệnh đề nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số \[f(x) = {a^x} - 9x - 1(x \in \mathbb{R})\]

Ta có: \[f(0) = 0;f'(x) = {a^x}\ln a - 9\]

Để \[f(x) \ge 0(\forall x \in \mathbb{R})\] thì \[\mathop {Min}\limits_\mathbb{R} f(x) = 0 = f(0) = >f(x)\] là hàm số đồng biến trên \[{\rm{[0; + }}\infty {\rm{)}}\] và nghịch biến trên \[( - \infty ;0]\] suy ra \[f'(0) = 0 < = >{a^0}\ln a = 9 < = >a = {e^9} \approx 8103.\]</></>

Vậy \[a \in ({10^3};{10^4}{\rm{]}}\].

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

ĐKXĐ: \(x + 1 >0 \Leftrightarrow x >- 1.\)

Ta có: \({\log _2}\left( {x + 1} \right) = 3 \Leftrightarrow x + 1 = {2^3} = 8 \Leftrightarrow x = 7\) (thỏa mãn ĐKXĐ).

Vậy nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là \(x = 7.\)

Đáp án A

Lời giải

Mỗi cách sắp xếp 5 học sinh là một hoán vị của 5 phần tử.

Vậy có 5! = 120 cách sắp xếp 5 học sinh thành một hàng dọc.

Đáp án B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP