Câu hỏi:

11/04/2022 145

Một mặt cầu tâm \(O\) nằm trên mặt phẳng đáy của hình chóp tam giác đều \(S.ABC\) có tất cả các cạnh bằng nhau, các đỉnh \(A,B,C\) thuộc mặt cầu. Biết bán kính mặt cầu là 1. Tính tổng độ dài \(l,\) các giao tuyến của mặt cầu với các mặt bên của hình chóp thỏa mãn? 

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Một mặt cầu tâm \(O\) nằm trên mặt phẳng đáy của hình chóp tam giác đều \(S.ABC\) có tất cả các cạnh bằng nhau, các đỉnh \(A,B,C\) thuộc mặt cầu. Biết bán kính mặt cầu là 1. Tính tổng độ dài  (ảnh 1)

Gọi \(D\) là trung điểm của đoạn \(AB,\) kẻ \(OI \bot SD,\) dễ dàng chứng minh được \(OI \bot \left( {SAB} \right).\)

Suy ra \(I\) là tâm đường tròn \(\left( C \right)\) giao tuyến của mặt cầu tâm \(O\) với mặt phẳng \(\left( {SAB} \right).\) Gọi \(M,N\) lần lượt là giao điểm của đường tròn \(\left( C \right)\) với \(SB,SA;K\) là trung điểm của \(MB.\)

Giả sử \(AB = a,\) theo giả thiết ta suy ra \(OC = 1 \Leftrightarrow \frac{{a\sqrt 3 }}{2} = 1 \Leftrightarrow a = \sqrt 3 .\)

Ta có \(SD = CD = \frac{3}{2},OD = \frac{1}{2},SO = \sqrt {S{C^2} - O{C^2}} = \sqrt 2 ,OI = \frac{{SO.OD}}{{SD}} = \frac{{\sqrt 2 }}{3},\) \(ID = \frac{{O{D^2}}}{{SD}} = \frac{1}{6},SI = \frac{4}{3}.\)

Gọi \(r\) là bán kính đường tròn \(\left( C \right),\) khi đó \(r = \sqrt {1 - O{I^2}} = \frac{{\sqrt 7 }}{3}.\)

Ta có tam giác \(SIK\) vuông tại \(K\) và góc \(\angle ISK = {30^0}\) suy ra \(IK = \frac{1}{2}IS = \frac{2}{3}\)

Xét tam giác \(MIK\) có \(\cos I = \frac{{IK}}{{IM}} = \frac{2}{{\sqrt 7 }} \Rightarrow I \approx {28^0} \Rightarrow \angle MIN \approx {64^0}\)

Khi đó chiều dài cung \(MN\) bằng \(\frac{{64}}{{180}}.\frac{{\sqrt 7 }}{3} = \frac{{16\sqrt 7 }}{{135}}.\) Vậy tổng độ dài \(l,\) các giao tuyến của mặt cầu với các mặt bên của hình chóp là \(l = \frac{{16\sqrt 7 }}{{45}} \approx 0,94.\)

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

Xem đáp án » 11/04/2022 6,402

Câu 2:

Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\) 

Xem đáp án » 15/06/2022 3,359

Câu 3:

Cho khối chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B,AB = \sqrt 3 ,BC = 3,SA \bot \left( {ABC} \right)\) và góc giữa \(SC\) với đáy bằng \({45^0}.\) Thể tích của khối chóp \(S.ABC\) bằng 

Xem đáp án » 15/06/2022 2,732

Câu 4:

Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là: 

Xem đáp án » 15/06/2022 2,717

Câu 5:

Trong không gian \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\). Tìm tọa độ đỉnh \(A'\) biết tọa độ các điểm \(A\left( {0;0;0} \right);B\left( {1;0;0} \right);C\left( {1;2;0} \right);D'\left( { - 1;3;5} \right).\) 

Xem đáp án » 15/06/2022 2,461

Câu 6:

Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)

Xem đáp án » 15/06/2022 955

Câu 7:

Biết \(\int\limits_{}^{} {f\left( x \right)dx} = {x^2} + C.\) Tính \(\int\limits_{}^{} {f\left( {2x} \right)dx} .\) 

Xem đáp án » 15/06/2022 867

Bình luận


Bình luận