Câu hỏi:

11/04/2022 186

Một mặt cầu tâm \(O\) nằm trên mặt phẳng đáy của hình chóp tam giác đều \(S.ABC\) có tất cả các cạnh bằng nhau, các đỉnh \(A,B,C\) thuộc mặt cầu. Biết bán kính mặt cầu là 1. Tính tổng độ dài \(l,\) các giao tuyến của mặt cầu với các mặt bên của hình chóp thỏa mãn? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Một mặt cầu tâm \(O\) nằm trên mặt phẳng đáy của hình chóp tam giác đều \(S.ABC\) có tất cả các cạnh bằng nhau, các đỉnh \(A,B,C\) thuộc mặt cầu. Biết bán kính mặt cầu là 1. Tính tổng độ dài  (ảnh 1)

Gọi \(D\) là trung điểm của đoạn \(AB,\) kẻ \(OI \bot SD,\) dễ dàng chứng minh được \(OI \bot \left( {SAB} \right).\)

Suy ra \(I\) là tâm đường tròn \(\left( C \right)\) giao tuyến của mặt cầu tâm \(O\) với mặt phẳng \(\left( {SAB} \right).\) Gọi \(M,N\) lần lượt là giao điểm của đường tròn \(\left( C \right)\) với \(SB,SA;K\) là trung điểm của \(MB.\)

Giả sử \(AB = a,\) theo giả thiết ta suy ra \(OC = 1 \Leftrightarrow \frac{{a\sqrt 3 }}{2} = 1 \Leftrightarrow a = \sqrt 3 .\)

Ta có \(SD = CD = \frac{3}{2},OD = \frac{1}{2},SO = \sqrt {S{C^2} - O{C^2}} = \sqrt 2 ,OI = \frac{{SO.OD}}{{SD}} = \frac{{\sqrt 2 }}{3},\) \(ID = \frac{{O{D^2}}}{{SD}} = \frac{1}{6},SI = \frac{4}{3}.\)

Gọi \(r\) là bán kính đường tròn \(\left( C \right),\) khi đó \(r = \sqrt {1 - O{I^2}} = \frac{{\sqrt 7 }}{3}.\)

Ta có tam giác \(SIK\) vuông tại \(K\) và góc \(\angle ISK = {30^0}\) suy ra \(IK = \frac{1}{2}IS = \frac{2}{3}\)

Xét tam giác \(MIK\) có \(\cos I = \frac{{IK}}{{IM}} = \frac{2}{{\sqrt 7 }} \Rightarrow I \approx {28^0} \Rightarrow \angle MIN \approx {64^0}\)

Khi đó chiều dài cung \(MN\) bằng \(\frac{{64}}{{180}}.\frac{{\sqrt 7 }}{3} = \frac{{16\sqrt 7 }}{{135}}.\) Vậy tổng độ dài \(l,\) các giao tuyến của mặt cầu với các mặt bên của hình chóp là \(l = \frac{{16\sqrt 7 }}{{45}} \approx 0,94.\)

Đáp án D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là: 

Xem đáp án » 15/06/2022 11,434

Câu 2:

Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

Xem đáp án » 11/04/2022 10,901

Câu 3:

Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)

Xem đáp án » 15/06/2022 4,496

Câu 4:

Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\) 

Xem đáp án » 15/06/2022 4,057

Câu 5:

Cho khối chóp \(S.ABC\) có tam giác \(ABC\) vuông tại \(B,AB = \sqrt 3 ,BC = 3,SA \bot \left( {ABC} \right)\) và góc giữa \(SC\) với đáy bằng \({45^0}.\) Thể tích của khối chóp \(S.ABC\) bằng 

Xem đáp án » 15/06/2022 3,152

Câu 6:

Trong không gian \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\). Tìm tọa độ đỉnh \(A'\) biết tọa độ các điểm \(A\left( {0;0;0} \right);B\left( {1;0;0} \right);C\left( {1;2;0} \right);D'\left( { - 1;3;5} \right).\) 

Xem đáp án » 15/06/2022 2,767

Câu 7:

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),SA = a\), tam giác \(ABC\) đều có cạnh \(2a.\) Tính thể tích khối chóp \(S.ABC.\) 

Xem đáp án » 15/06/2022 1,545
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay