Câu hỏi:

26/04/2022 162

Tiếp tuyến của đồ thị hàm số \(y = \frac{{x + 1}}{{2x - 3}}\) tại điểm có hoành độ \({x_0} = - 1\) có hệ số góc bằng bao nhiêu?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(y' = \frac{{ - 5}}{{{{\left( {2x - 3} \right)}^2}}}.\)

Hệ số góc của tiếp tuyến tại điểm có hoành độ \({x_0} = - 1\) là

\(y'\left( { - 1} \right) = - \frac{1}{5}.\)

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tâm đối xứng của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 3}}.\) 

Xem đáp án » 26/04/2022 136,393

Câu 2:

Tìm \(m\) để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 4} \right)x + 3\) đạt cực đại tại điểm x=3.

Xem đáp án » 26/04/2022 11,315

Câu 3:

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 20;2} \right]\) để hàm số y=x3x2+3mx1 đồng biến trên \(\mathbb{R}.\) 

Xem đáp án » 26/04/2022 10,528

Câu 4:

Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham khảo hình vẽ).

 Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham kh (ảnh 1)

Tính theo \(a\) thể tích khối trụ có hai đáy là hai đường tròn ngoại tiếp hai đáy của lăng trụ \(ABC.A'B'C'.\) 

Xem đáp án » 26/04/2022 9,038

Câu 5:

Cho hai số thực dương \(a,b.\) Rút gọn biểu thức \[\] ta thu được \(A = {a^m}.{b^n}.\)

Xem đáp án » 26/04/2022 7,334

Câu 6:

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 2}},\) biết tiếp tuyến có hệ số góc \(k = - 3\) 

Xem đáp án » 26/04/2022 5,218

Câu 7:

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB = a,BC = 2a,\) mặt bên \(ACC'A'\) là hình vuông. Gọi \(M,N,P\) lần lượt là trung điểm của \(AC,CC',A'B'\) và \(H\) là hình chiếu của \(A\) lên \(BC.\) Tính theo \(a\) khoảng cách giữa hai đường thẳng \(MP\) và \(HN.\)

Xem đáp án » 26/04/2022 2,198

Bình luận


Bình luận