Câu hỏi:

26/04/2022 1,643 Lưu

Cho hàm số \[y = f(x)\]có bảng biến thiên như sau:

Cho hàm số \[y = f(x)\]có bảng biến thiên như sau:Đồ thị của hàm số đã cho có tổng số bao nhiêu tiệm cận đứng và tiệm cận ngang? (ảnh 1)

Đồ thị của hàm số đã cho có tổng số bao nhiêu tiệm cận đứng và tiệm cận ngang?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dựa vào bảng biến thiên ta có: \[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {0^ - }} f(x) = + \infty \\\mathop {\lim }\limits_{x \to {{( - 2)}^ + }} f(x) = - \infty \end{array} \right.\]=>x = 0, x = -2 là tiệm cận ngang của đồ thị hàm số.

Mặt khác: \[\mathop {\lim }\limits_{x \to + \infty } f(x) = 0 = >y = 0\]là tiệm cận ngang của đồ thị hàm số.

Vậy đồ thị có tổng số 3 tiệm cận.

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2 \Rightarrow \) đường thẳng \(y = 2\)là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \Rightarrow \) đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số.

Vậy tâm đối xứng của đồ thị là \(A\left( {3;2} \right).\)

Đáp án A

Lời giải

Ta có \(y' = {x^2} - 2mx + {m^2} - 4.\)

\(y'\left( 3 \right) = 9 - 6m + {m^2} - 4 = {m^2} - 6m + 5 = 0\)

Ta có: \( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\)

Có y"=2x2m.

Với \(m = 5\) ta có: y"(3)=610=4<0.Suy ra hàm số đạt cực đại tại x=3.

Với \(m = 1\) ta có y"(3)=62=4>0 suy ra hàm số đạt cực tiểu tại \(x = 3\)

Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP