Câu hỏi:

26/04/2022 231 Lưu

Tìm giá trị lớn nhất của hàm số \(y = {x^3} - 3{x^2}\) trên \(\left[ { - 1;2} \right].\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(y' = 3{x^2} - 6x\)

\(y' = 0 \Leftrightarrow 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\) (nhận).

\(y\left( 0 \right) = 0;y\left( { - 1} \right) = - 4;y\left( 2 \right) = - 4.\)

Vậy \(\mathop {Max}\limits_{\left[ { - 1;2} \right]} y = 0 \Leftrightarrow x = 0.\)

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2 \Rightarrow \) đường thẳng \(y = 2\)là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \Rightarrow \) đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số.

Vậy tâm đối xứng của đồ thị là \(A\left( {3;2} \right).\)

Đáp án A

Lời giải

Ta có \(y' = {x^2} - 2mx + {m^2} - 4.\)

\(y'\left( 3 \right) = 9 - 6m + {m^2} - 4 = {m^2} - 6m + 5 = 0\)

Ta có: \( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\)

Có y"=2x2m.

Với \(m = 5\) ta có: y"(3)=610=4<0.Suy ra hàm số đạt cực đại tại x=3.

Với \(m = 1\) ta có y"(3)=62=4>0 suy ra hàm số đạt cực tiểu tại \(x = 3\)

Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP