Câu hỏi:

26/04/2022 5,059 Lưu

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB = a,BC = 2a,\) mặt bên \(ACC'A'\) là hình vuông. Gọi \(M,N,P\) lần lượt là trung điểm của \(AC,CC',A'B'\) và \(H\) là hình chiếu của \(A\) lên \(BC.\) Tính theo \(a\) khoảng cách giữa hai đường thẳng \(MP\) và \(HN.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB = a,BC = 2a,\) mặt bên \(ACC'A'\) là hình vuông. Gọi \(M,N,P\) lần lượt là trung điểm của \(AC,CC',A'B'\) và \(H\) là hìn (ảnh 1)

Gọi \(P',M'\) lần lượt là trung điểm của \(AB\) và \(A'C'.\)

Ta có \(\left\{ \begin{array}{l}P'M//BC\\P'M \not\subset \left( {BCC'B'} \right)\\BC \subset \left( {BCC'B'} \right)\end{array} \right. \Rightarrow P'M//\left( {BCC'B'} \right)\left( 1 \right)\)

Tương tự ta chứng minh được \(M'M//\left( {BCC'B'} \right)\left( 2 \right)\)

Từ (1) và (2) ta có \(\left( {PP'MM'} \right)//\left( {BCC'B'} \right)\)

Ta có \(\left\{ \begin{array}{l}\left( {PP'MM'} \right)//\left( {BCC'B'} \right)\\PM \subset \left( {PP'MM'} \right)\\HN \subset \left( {BCC'B'} \right)\end{array} \right.\)

\( \Rightarrow d\left( {HN;PM} \right) = d\left( {\left( {PP'MM'} \right);\left( {BCC'B'} \right)} \right) = d\left( {M;\left( {BCC'B'} \right)} \right) = \frac{1}{2}d\left( {A;\left( {BCC'B'} \right)} \right)\)

Lại có \(\left\{ \begin{array}{l}AH \bot BC\\AH \bot BB'\end{array} \right. \Rightarrow AH \bot \left( {BCC'B'} \right) \Rightarrow d\left( {A;\left( {BCC'B'} \right)} \right) = AH\)

Trong tam giác vuông \(ABC\) có \(AC = \sqrt {B{C^2} - A{B^2}} = a\sqrt 3 \)

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {a\sqrt 3 } \right)}^2}}} = \frac{4}{{3{a^2}}} \Rightarrow AH = \frac{{a\sqrt 3 }}{2}\)

Vậy khoảng cách giữa hai đường thẳng \(MP\) và \(HN\) là \(d\left( {MP;HN} \right) = \frac{{a\sqrt 3 }}{4}.\)

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2 \Rightarrow \) đường thẳng \(y = 2\)là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \Rightarrow \) đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số.

Vậy tâm đối xứng của đồ thị là \(A\left( {3;2} \right).\)

Đáp án A

Lời giải

Ta có \(y' = {x^2} - 2mx + {m^2} - 4.\)

\(y'\left( 3 \right) = 9 - 6m + {m^2} - 4 = {m^2} - 6m + 5 = 0\)

Ta có: \( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\)

Có y"=2x2m.

Với \(m = 5\) ta có: y"(3)=610=4<0.Suy ra hàm số đạt cực đại tại x=3.

Với \(m = 1\) ta có y"(3)=62=4>0 suy ra hàm số đạt cực tiểu tại \(x = 3\)

Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP