Đường thẳng \(y = {m^2}\) cắt đồ thị hàm số \(y = {x^4} - {x^2} - 10\) tại hai điểm phân biệt \(A,B\) sao cho tam giác \(OAB\) vuông (với \(O\) là gốc tọa độ). Mệnh đề nào sau đây đúng?
Câu hỏi trong đề: [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề) !!
Quảng cáo
Trả lời:
Phương trình hoành độ giao điểm: \({x^4} - {x^2} - {m^2} - 10 = 0\left( * \right)\)
Đặt \(t = {x^2} \ge 0\)
\(\left( * \right) \Leftrightarrow {t^2} - t - {m^2} - 10 = 0\) có \[ac = - {m^2} - 10 < 0\]
\( \Rightarrow \) Phương trình luôn có hai nghiệm \({t_1},{t_2}\) trái dấu
Khi đó: \(A\left( {\sqrt {\frac{{1 + \sqrt {4{m^2} + 41} }}{2}} ;{m^2}} \right),B\left( { - \sqrt {\frac{{1 + \sqrt {4{m^2} + 41} }}{2}} ;{m^2}} \right)\)
\(\Delta OAB\) vuông tại \(O \Leftrightarrow \overrightarrow {OA} .\overrightarrow {OB} = 0.\)
\( - \frac{{1 + \sqrt {4{m^2} + 41} }}{2} + {m^4} = 0 \Leftrightarrow 2{m^4} = 1 + \sqrt {4{m^2} + 41} \Leftrightarrow \sqrt {4a + 41} = 2{a^2} - 1\) với \(\left( {a = {m^2}} \right)\)
\( \Rightarrow a = {m^2} = 2\)
Đáp án D
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2 \Rightarrow \) đường thẳng \(y = 2\)là tiệm cận ngang của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \Rightarrow \) đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số.
Vậy tâm đối xứng của đồ thị là \(A\left( {3;2} \right).\)
Đáp án A
Lời giải
Ta có \(y' = {x^2} - 2mx + {m^2} - 4.\)
\(y'\left( 3 \right) = 9 - 6m + {m^2} - 4 = {m^2} - 6m + 5 = 0\)
Ta có: \( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\)
Có
Với \(m = 5\) ta có: Suy ra hàm số đạt cực đại tại x=3.
Với \(m = 1\) ta có suy ra hàm số đạt cực tiểu tại \(x = 3\)
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.