Câu hỏi:

26/04/2022 307 Lưu

Cho biểu thức \(P = \frac{{{x^2} + xy + {y^2}}}{{x - xy + {y^2}}}\) với \({x^2} + {y^2} \ne 0.\) Tính giá trị nhỏ nhất của \(P.\) 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với \(y = 0 \Rightarrow P = 1.\)

Với \(y \ne 0,\) đặt \(t = \frac{x}{y} \Rightarrow P = \frac{{{t^2} + t + 1}}{{{t^2} - t + 1}} \Rightarrow P' = \frac{{ - 2{t^2} + 2}}{{{{\left( {{t^2} - t + 1} \right)}^2}}}.\) Ta có BBT:

Cho biểu thức \(P = \frac{{{x^2} + xy + {y^2}}}{{x - xy + {y^2}}}\) với \({x^2} + {y^2} \ne 0.\) Tính giá trị nhỏ nhất của \(P.\)  (ảnh 1)

Vậy \(\frac{1}{3} \le P \le 3 \Rightarrow \min P = \frac{1}{3}.\)

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2 \Rightarrow \) đường thẳng \(y = 2\)là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \Rightarrow \) đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số.

Vậy tâm đối xứng của đồ thị là \(A\left( {3;2} \right).\)

Đáp án A

Lời giải

Ta có \(y' = {x^2} - 2mx + {m^2} - 4.\)

\(y'\left( 3 \right) = 9 - 6m + {m^2} - 4 = {m^2} - 6m + 5 = 0\)

Ta có: \( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\)

Có y"=2x2m.

Với \(m = 5\) ta có: y"(3)=610=4<0.Suy ra hàm số đạt cực đại tại x=3.

Với \(m = 1\) ta có y"(3)=62=4>0 suy ra hàm số đạt cực tiểu tại \(x = 3\)

Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP