Cho biểu thức \(P = \frac{{{x^2} + xy + {y^2}}}{{x - xy + {y^2}}}\) với \({x^2} + {y^2} \ne 0.\) Tính giá trị nhỏ nhất của \(P.\)
Câu hỏi trong đề: [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề) !!
Quảng cáo
Trả lời:
Với \(y = 0 \Rightarrow P = 1.\)
Với \(y \ne 0,\) đặt \(t = \frac{x}{y} \Rightarrow P = \frac{{{t^2} + t + 1}}{{{t^2} - t + 1}} \Rightarrow P' = \frac{{ - 2{t^2} + 2}}{{{{\left( {{t^2} - t + 1} \right)}^2}}}.\) Ta có BBT:

Vậy \(\frac{1}{3} \le P \le 3 \Rightarrow \min P = \frac{1}{3}.\)
Đáp án A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2 \Rightarrow \) đường thẳng \(y = 2\)là tiệm cận ngang của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \Rightarrow \) đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số.
Vậy tâm đối xứng của đồ thị là \(A\left( {3;2} \right).\)
Đáp án A
Lời giải
Ta có \(y' = {x^2} - 2mx + {m^2} - 4.\)
\(y'\left( 3 \right) = 9 - 6m + {m^2} - 4 = {m^2} - 6m + 5 = 0\)
Ta có: \( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\)
Có
Với \(m = 5\) ta có: Suy ra hàm số đạt cực đại tại x=3.
Với \(m = 1\) ta có suy ra hàm số đạt cực tiểu tại \(x = 3\)
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.