Câu hỏi:

26/04/2022 411 Lưu

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\), liên tục trên mỗi khoảng xác định có bảng biến thiên như sau

 Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\), liên tục trên mỗi khoảng xác định có bảng biến thiên như sauĐồ thị \(y = \frac{1}{{f\left( x \ (ảnh 1)

Đồ thị \(y = \frac{1}{{f\left( x \right) + 2}}\) có bao nhiêu đường tiệm cận đứng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số: \(y = \frac{1}{{f\left( x \right) + 2}}\)

Điều kiện xác định: \(\left\{ \begin{array}{l}f\left( x \right) \ne - 2\\x \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne {x_0}\left( {{x_0} < 1} \right)\\x \ne 1\end{array} \right.\)

Tập xác định: \(D = \left\{ {\forall x \in \mathbb{R};x \ne 1,x \ne 2,x \ne {x_0}\left( {{x_0} < 1} \right)} \right\}.\)

\(\mathop {\lim }\limits_{x \to {e^ + }} \frac{1}{{f\left( x \right) + 2}} = - \infty ;\mathop {\lim }\limits_{x \to {e^ - }} \frac{1}{{f\left( x \right) + 2}} = + \infty \)

\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{f\left( x \right) + 2}} = + \infty ;\mathop {\lim }\limits_{x \to {2^ - }} \frac{1}{{f\left( x \right) + 2}} = + \infty \)

\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{f\left( x \right) + 2}} = 0;\mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{f\left( x \right) + 2}} = 0\)

Vậy đồ thị \(y = \frac{1}{{f\left( x \right) + 2}}\) có 2 đường tiệm cận đứng \(x = 2,x = {x_0}\left( {{x_0} < 1} \right).\)

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2 \Rightarrow \) đường thẳng \(y = 2\)là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \Rightarrow \) đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số.

Vậy tâm đối xứng của đồ thị là \(A\left( {3;2} \right).\)

Đáp án A

Lời giải

Ta có \(y' = {x^2} - 2mx + {m^2} - 4.\)

\(y'\left( 3 \right) = 9 - 6m + {m^2} - 4 = {m^2} - 6m + 5 = 0\)

Ta có: \( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\)

Có y"=2x2m.

Với \(m = 5\) ta có: y"(3)=610=4<0.Suy ra hàm số đạt cực đại tại x=3.

Với \(m = 1\) ta có y"(3)=62=4>0 suy ra hàm số đạt cực tiểu tại \(x = 3\)

Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP