Có bao nhiêu giá trị nguyên của \(m \in \left( { - 10;10} \right)\) để phương trình \(\frac{{\log \left( {mx + 1} \right)}}{{\log \left( {x + 1} \right)}} = 2\) có nghiệm thực duy nhất?
Câu hỏi trong đề: [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề) !!
Quảng cáo
Trả lời:
Điều kiện: \(x >- 1;x \ne 0.\)
Phương trình tương đương \(\log \left( {mx} \right) = \log {\left( {x + 1} \right)^2} \Leftrightarrow mx = {\left( {x + 1} \right)^2} \Leftrightarrow m = \frac{{{{\left( {x + 1} \right)}^2}}}{x}.\)
Xét hàm số \[f(x) = \frac{{{{(x + 1)}^2}}}{x}\]trên \[( - 1; + \infty )\] ta có:
\[f'(x) = (x + 2 + \frac{1}{x})' = 1 - \frac{1}{{{x^2}}}\]
Ta có bảng biến thiên sau:

Dựa vào BBT, ta thấy TCBT có 10 giá trị \(m\) nguyên.
Đáp án B
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 2 \Rightarrow \) đường thẳng \(y = 2\)là tiệm cận ngang của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to {3^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty \Rightarrow \) đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số.
Vậy tâm đối xứng của đồ thị là \(A\left( {3;2} \right).\)
Đáp án A
Lời giải
Ta có \(y' = {x^2} - 2mx + {m^2} - 4.\)
\(y'\left( 3 \right) = 9 - 6m + {m^2} - 4 = {m^2} - 6m + 5 = 0\)
Ta có: \( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\)
Có
Với \(m = 5\) ta có: Suy ra hàm số đạt cực đại tại x=3.
Với \(m = 1\) ta có suy ra hàm số đạt cực tiểu tại \(x = 3\)
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.