Câu hỏi:
26/04/2022 2,458Gọi S là tập các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{x - 3}}{{{x^2} - 2mx + 2{m^2} - 9}}\) có đúng \(3\) đường tiệm cận. Số phần tử của S là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } y = 0 \Rightarrow y = 0\) là đường tiệm cận ngang của đồ thị hàm số
Do đó đồ thị hàm số \(y = \frac{{x - 3}}{{{x^2} - 2mx + 2{m^2} - 9}}\) có đúng 3 đường tiệm cận khi và chỉ khi đồ thị hàm số có đúng hao tiệm cận đứng.
\( \Leftrightarrow \) phương trình \({x^2} - 2mx + 2{m^2} - 9 = 0\) có hai nghiệm phân biệt khác 3
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' >0\\{3^2} - 2.m.3 + 2{m^2} - 9 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9 - {m^2} >0\\{m^2} - 3m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3 < m < 3\\m \ne 0;m \ne 3\end{array} \right.\)
Mà \(m\) nguyên nên \(m \in \left\{ { - 2; - 1;1;2} \right\}.\) Vậy số phần tử của \(S\) là 4.
Phép vị tự tâm \(O,\) tỉ số \(k = - 2020\) biến đường tròn có bán kính \(R\) thành đường tròn có bán kính là \({R_1} = \left| { - 2020} \right|R = 2020.4 = 8080\)
Phép tịnh tiến theo véctơ \(\overrightarrow v = \left( {2019;2020} \right)\) biến đường tròn \(R'\) thành đường tròn có cùng bán kính
Vậy bán kính của đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm \(O\) tỉ số \(k = - 2020\) và phép tịnh tiến theo véctơ \(\overrightarrow v = \left( {2019;2020} \right)\) là 8080.
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?
Câu 2:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].
Câu 3:
Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là
Câu 4:
Cho 40 thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 thẻ.Xác suất để tổng các số ghi trên 3 thẻ được chọn là một số chia hết cho 3 bằng
Câu 5:
Cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(6\).Biết khoảng cách từ tâm O đến mặt phẳng \(\left( \alpha \right)\) bằng \(4\). Mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính bằng
Câu 6:
Với \[a\] là số thực dương khác \[1\] tùy ý, \[{\log _{{a^5}}}{a^4}\] bằng
Câu 7:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AC = 2a;\,BD = 3a\), \(SA = a\), \(SA\) vuông góc với mặt đáy. Thể tích của khối chóp \(S.ABCD\) là
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Bộ đề thi thử Đại học môn Toán mới nhất cực hay có lời giải (Đề 1)
về câu hỏi!