Câu hỏi:
26/04/2022 1,049Nhà bạn Minh cần khoan một cái giếng nước. Biết rằng giá tiền của mét khoan đầu tiên là 200.000đ và kể từ mét khoan thứ hai, giá tiền của mỗi mét sau tăng thêm 7% so với giá tiền của mét khoan ngay trước nó. Hỏi nếu nhà bạn An khoan cái giếng sâu 30m thì hết bao nhiêu tiền (làm tròn đến hàng nghìn)?
Quảng cáo
Trả lời:
Bài toán tổng quát:
Giả sử giá tiền của mét khoan đầu tiên là \(x\) (đồng) và giá tiền của mỗi mét sau tăng thêm \(y\% \) so với giá tiền của mét khoan ngay trước đó \(\left( {x >0;y >0} \right).\) Ta có:
* Giá tiền mét khoan đầu tiên là \({S_1} = x\) (đồng)
* Giá tiền mét khoan thứ hai là \({S_2} = x + \frac{y}{{100}}.x = \frac{{y + 100}}{{100}}.x\) (đồng)
* Giá tiền mét khoan thứ ba là \({S_3} = {S_2} + \frac{y}{{100}}.{S_2} = \frac{{y + 100}}{{100}}.{S_2} = {\left( {\frac{{y + 100}}{{100}}} \right)^2}.x\) (đồng)
* Giá tiền của mét khoan thứ ba là \({S_4} = {S_3} + \frac{y}{{100}}.{S_3} = \frac{{y + 100}}{{100}}.{S_3} = {\left( {\frac{{y + 100}}{{100}}} \right)^3}.x\) (đồng)
…………………………………………………………………………………………
* Giá tiền của mét khoan thứ \(n\) là \({S_n} = {S_{n - 1}} + \frac{y}{{100}}.{S_{n - 1}} = \frac{{y + 100}}{{100}}.{S_{n - 1}} = {\left( {\frac{{y + 100}}{{100}}} \right)^{n - 1}}.x\) (đồng)
\( \Rightarrow \) Giá tiền để khoan cái giếng sâu \(n\) mét là:
\(S = {S_1} + {S_2} + {S_3} + ... + {S_n} = \left[ {1 + \frac{{y + 100}}{{100}} + {{\left( {\frac{{y + 100}}{{100}}} \right)}^2} + ... + {{\left( {\frac{{y + 100}}{{100}}} \right)}^{n - 1}}} \right].x\)
Đặt \(k = \frac{{y + 100}}{{100}} \Rightarrow S = \left( {1 + k + {k^2} + ... + {k^{n - 1}}} \right).x = \frac{{x\left( {1 - {k^n}} \right)}}{{1 - k}}\)
\(k = 1,07\) và \({S_{30}} = \frac{{200000.\left( {1 - {{1.07}^{30}}} \right)}}{{1 - 1,07}} \approx 18892000\) (đồng)
Vậy nếu nhà bạn An khoan cái giếng sâu 30 m thì hết 18892000 đồng.
Đáp án C
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi không gian mẫu là \(\Omega .\)
Chọn 3 từ 40 thẻ có \(C_{40}^3\) cách.
\( \Rightarrow n\left( \Omega \right) = C_{40}^3 = 9880.\)
Gọi A: “Tổng 3 số ghi trên thẻ là một số chia hết cho 3”.
Các số chia hết cho 3 từ 1 đến 40 là: \(\left\{ {3;6;9;...30;33;36;39} \right\}:\) có 13 số.
Các số chia cho 3 dư 1 từ 1 đến 40 là: \(\left\{ {1;4;7;...31;34;37;40} \right\}:\) có 14 số.
Các số chia cho 3 dư 2 từ 1 đến 40 là: \(\left\{ {2;5;8;...32;35;38} \right\}:\) có 13 số.
Trường hợp 1:3 số cùng chia hết cho 3; chia cho 3 dư 1; chia cho 3 dư 2:
Có: \(C_{13}^3 + C_{13}^3 + C_{14}^3 = 286 + 286 + 364 = 936\) cách.
Trường hợp 2:1 số chia hết cho 3, 1 số chia cho 3 dư 1 và 1 số chia cho 3 dư 2:
Có: \(C_{13}^1.C_{13}^1.C_{14}^1 = 2366\) cách.
Vậy số cách chọn để được tổng 3 số chia hết cho 3 là: \(936 + 2366 = 3302\) cách.
\( \Rightarrow n\left( A \right) = 3302.\)
Xác suất biến cố A là: \(p\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3302}}{{9880}} = \frac{{127}}{{380}}.\)
Đáp án B
Lời giải
Dựa vào đồ thị ta có đồ thị trên là đồ thị hàm bậc bốn trùng phương có bề lõm hướng xuống nên hệ số \(a < 0\) nên loại đáp án A và D.
Xét điểm \(\left( {1;2} \right)\) thuộc đồ thị hàm số trên.
Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + {x^2} + 1\) ta được 2 =1 (vô lý).
Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + 2{x^2} + 1\) ta được 2 = 2 (đúng).
Nên đồ thị trong hình vẽ trên là đồ thị của hàm số \(y = - {x^4} + 2{x^2} + 1.\)
Đáp án A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận