Câu hỏi:
26/04/2022 205Cho hàm số \(y = \frac{{x + a}}{{bx - 2}}\)\(\left( {ab \ne - 2} \right)\). Biết rằng \(a\) và \(b\) là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm \(A\left( { - 1;\,\,2} \right)\) song song với đường thẳng \(d:\,\,3x - y - 7 = 0\). Khi đó giá trị của \(a - 3b\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(y' = \frac{{ - 2 - ab}}{{{{\left( {bx - 2} \right)}^2}}}.\)
Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm \(A\left( { - 1;2} \right)\) là
\(\Delta :y'\left( { - 1} \right).\left( {x + 1} \right) + 2\) hay \(\Delta :y = y'\left( { - 1} \right).x + 2 + y'\left( { - 1} \right).\)
Để \(\Delta \) song song với đường thẳng \(d:y = 3x - 7\) thì \(\left\{ \begin{array}{l}y'\left( { - 1} \right) = 3\\2 + y'\left( { - 1} \right) \ne - 7\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{ - 2 - ab}}{{{{\left( {b + 2} \right)}^2}}} = 3{\rm{ }}\left( 1 \right)\\2 + \frac{{ - 2 - ab}}{{{{\left( {b + 2} \right)}^2}}} \ne - 7{\rm{ }}\left( 2 \right)\end{array} \right..\)
Mà điểm \(A\left( { - 1;2} \right)\) thuộc đồ thị hàm số nên \(\frac{{1 - a}}{{b + 2}} = 2 \Leftrightarrow a = - 2b - 3\) thay vào (1) ta được \(\frac{{ - 2 - b\left( { - 2b - 3} \right)}}{{{{\left( {b + 2} \right)}^2}}} = 3 \Leftrightarrow \left\{ \begin{array}{l}{b^2} + 9b + 14 = 0\\b \ne - 2\end{array} \right. \Leftrightarrow b = - 7\) suy ra \(a = 11\) thỏa mãn (2).
Vậy \(a - 3b = 11 - 3.\left( { - 7} \right) = 32.\)
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?
Câu 2:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].
Câu 3:
Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là
Câu 4:
Cho 40 thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 thẻ.Xác suất để tổng các số ghi trên 3 thẻ được chọn là một số chia hết cho 3 bằng
Câu 5:
Cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(6\).Biết khoảng cách từ tâm O đến mặt phẳng \(\left( \alpha \right)\) bằng \(4\). Mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính bằng
Câu 6:
Với \[a\] là số thực dương khác \[1\] tùy ý, \[{\log _{{a^5}}}{a^4}\] bằng
Câu 7:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AC = 2a;\,BD = 3a\), \(SA = a\), \(SA\) vuông góc với mặt đáy. Thể tích của khối chóp \(S.ABCD\) là
về câu hỏi!