Câu hỏi:
26/04/2022 253Cho hàm số \(f\left( x \right)\) liên tục trên R và hàm số \(f'\left( x \right)\) có bảng biến thiên như sau. Tìm mệnh đề đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Dựa vào bảng biến thiên của \(f'\left( x \right),\) ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = {x_1} \in \left( { - \infty ; - 1} \right)\\x = {x_2} \in \left( { - 1;1} \right)\\x = {x_3} \in \left( {1; + \infty } \right)\end{array} \right..\)
\(f'\left( x \right)\)đổi dấu từ âm sang dương khi đi qua điểm \({x_1},\) suy ra \({x_1}\) là điểm cực tiểu.
\(f'\left( x \right)\) đổi dấu từ dương sang âm khi đi qua điểm \({x_2},\) suy ra \({x_2}\) là điểm cực đại.
\(f'\left( x \right)\) đổi dấu từ âm sang dương khi đi qua điểm \({x_3},\) suy ra \({x_3}\) là điểm cực tiểu.
Đáp án A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?
Câu 2:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].
Câu 3:
Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là
Câu 4:
Cho 40 thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 thẻ.Xác suất để tổng các số ghi trên 3 thẻ được chọn là một số chia hết cho 3 bằng
Câu 5:
Cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(6\).Biết khoảng cách từ tâm O đến mặt phẳng \(\left( \alpha \right)\) bằng \(4\). Mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính bằng
Câu 6:
Với \[a\] là số thực dương khác \[1\] tùy ý, \[{\log _{{a^5}}}{a^4}\] bằng
Câu 7:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AC = 2a;\,BD = 3a\), \(SA = a\), \(SA\) vuông góc với mặt đáy. Thể tích của khối chóp \(S.ABCD\) là
về câu hỏi!