Câu hỏi:

26/04/2022 245

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình \(\left| {f\left( {\cos x} \right)} \right| = - 2m + 3\) có 4 nghiệm thuộc khoảng [0;2π]

Cho hàm số liên tục trên và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số để phương trình \(\left| {f\left( {\cos x} \right)} \right| =  - 2m + 3\) có  nghiệm thuộc khoảng là# (ảnh 1)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \(t = \cos x,\) với \(x \in \left[ {0;2\pi } \right]\) ta có \(t \in \left[ { - 1;1} \right]\) và:

+ Nếu \(t \in \left( { - 1;1} \right]\) thì tương ứng mỗi giá trị của \(t\) ta được 2 giá trị của \(x \in \left[ {0;2\pi } \right].\)

+ Nếu \(t = - 1\) thì ta chỉ được duy nhất giá trị \(x = \pi \in \left[ {0;2\pi } \right].\)

Phương trình viết lại: \(\left| {f\left( t \right)} \right| = - 2m + 3\left( 1 \right)\)

Trường hợp 1. \(m >\frac{3}{2}\) thì (1) vô nghiệm nên phương trình đã cho vô nghiệm.

Trường hợp 2. \(m = \frac{3}{2},\) khi đó (1) viết về \(\left| {f\left( t \right)} \right| = 0 \Leftrightarrow f\left( t \right) = 0,\) từ đồ thị có thể thấy phương trình thu được có đúng 1 nghiệm duy nhất trên \(\left( { - 1;1} \right],\) ta có điều kiện:

\(\left\{ \begin{array}{l} - 2m + 3 < 3\\2m - 3 \ge - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >0\\m \ge 1\end{array} \right. \Leftrightarrow m \ge 1.\)

Kết hợp lại ta được \(1 \le m < \frac{3}{2}.\)

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?

Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau? (ảnh 1)

Xem đáp án » 11/04/2022 10,769

Câu 2:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].

Xem đáp án » 26/04/2022 8,811

Câu 3:

Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là

Xem đáp án » 26/04/2022 6,097

Câu 4:

Cho 40 thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 thẻ.Xác suất để tổng các số ghi trên 3 thẻ được chọn là một số chia hết cho 3 bằng

Xem đáp án » 26/04/2022 5,158

Câu 5:

Cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(6\).Biết khoảng cách từ tâm O đến mặt phẳng \(\left( \alpha \right)\) bằng \(4\). Mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính bằng

Xem đáp án » 26/04/2022 3,983

Câu 6:

Với \[a\] là số thực dương khác \[1\] tùy ý, \[{\log _{{a^5}}}{a^4}\] bằng

Xem đáp án » 26/04/2022 3,730

Câu 7:

Biết giới hạn \(\lim \frac{{3 - 2n}}{{5n + 1}} = \frac{a}{b}\) trong đó \(a,\,b \in Z\) và \(\frac{a}{b}\) tối giản. Tính \(a.b\).

Xem đáp án » 26/04/2022 3,257

Bình luận


Bình luận