Câu hỏi:
26/04/2022 1,420Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(3a\). Gọi \(M\)thuộc cạnh \(B'C'\) sao cho \(MC' = 2MB'\) , \(N\) thuộc cạnh \(AC\) sao cho \(AC = 4NC\) Mặt phẳng \(\left( {A'MN} \right)\) cắt cạnh \(BC\) tại \(Q\). Tính thể tích \(V\) khối đa diện \(CNQ.C'A'M\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Cách 1.
Mặt phẳng
\(\left( {A'MN} \right)\) cắt các mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) theo các giao tuyến song song nên \(Q\) là giao điểm của đường thẳng qua \(N\) song song với \(A'M\) với cạnh \(BC.\)
Kéo dài các đường \(A'N,MQ\) và \(C'C\) đồng quy tại cùng một điểm \(P\) (3 mặt phẳng cắt nhau theo 3 giao tuyến đồng quy).
Như vậy khối đa diện cần tính thể tích là một khối chóp cụt.
Ta có \(C'M = \frac{2}{3}B'C' = 2a.{S_1} = {S_{\Delta A'C'M}} = \frac{1}{2}A'C'.C'M.\sin {60^0} = \frac{1}{2}.3a.2a.\frac{{\sqrt 3 }}{2} = \frac{{3\sqrt 3 {a^2}}}{2}.\)
Gọi \(E\) là điểm trên cạnh \(BC\) sao cho \(EC = 2EB\) thì \(A'M//AE\) nên
Diện tích tam giác \(CNQ\) là \({S_2} = {S_{\Delta CNQ}} = \frac{1}{2}CQ.CN.\sin {60^0} = \frac{1}{2}.\frac{a}{2}.\frac{{3a}}{4}.\frac{{\sqrt 3 }}{2} = \frac{{3\sqrt 3 {a^2}}}{{32}}.\)
Vậy ..
Cách 2:
Mặt phẳng \(\left( {A'MN} \right)\) cắt các mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) theo các giao tuyến song song nên \(Q\) là giao điểm của đường thẳng qua \(N\) song song với \(A'M\) với cạnh \(BC.\)
Ta có \(C'M = \frac{2}{3}B'C' = 2A,{S_{\Delta A'C'M}} = \frac{1}{2}A'C'.C'M.\sin {60^0} = \frac{1}{2}.3a.2a.\frac{{\sqrt 3 }}{2} = \frac{{3\sqrt 3 {a^2}}}{2}.\)
Lại có \(\frac{{PC}}{{PC'}} = \frac{{CN}}{{A'C'}} = \frac{{CN}}{{AC}} = \frac{1}{4} \Rightarrow \frac{{PC}}{{CC'}} = \frac{1}{3} \Rightarrow PC = \frac{1}{3}.3a = a \Rightarrow PC' = 4a.\)
Thể tích khối chóp \(P.C'A'M\) là \({V_{P.C'A'M}} = \frac{1}{3}.4a.\frac{{3\sqrt 3 {a^2}}}{2} = 2\sqrt 3 {a^3}.\)
Gọi \(E\) là điểm trên cạnh \(BC\) sao cho \(EC = 2EB\) thì \(A'M//AE\) nên
\(\frac{{CQ}}{{CE}} = \frac{{CN}}{{CA}} = \frac{1}{4} \Rightarrow CQ = \frac{1}{4}CE = \frac{1}{4}C'M = \frac{1}{2}a.\)
Ta có \({S_{\Delta CNQ}} = \frac{1}{2}D\left( {N,CQ} \right).CQ = \frac{1}{2}.\frac{1}{4}.d\left( {A,BC} \right).CQ = \frac{1}{8}.\frac{{3a\sqrt 3 }}{2}.\frac{1}{2}a = \frac{{3{a^2}\sqrt 3 }}{{32}}.\)
Thể tích khối chóp \(P.CNQ\) là \({V_{P.CNQ}} = \frac{1}{3}PC.{S_{\Delta CNQ}} = \frac{1}{3}.a.\frac{{3{a^2}\sqrt 3 }}{{32}} = \frac{{{a^3}\sqrt 3 }}{{32}}.\)
Vậy \({V_{CNQ.C'A'M}} = {V_{P.C'A'M}} - {V_{P.CNQ}} = 2\sqrt 3 {a^3} - \frac{{{a^3}\sqrt 3 }}{{32}} = \frac{{63\sqrt 3 {a^3}}}{{32}}.\)
Cách 3:
Mặt phẳng \(\left( {A'MN} \right)\) cắt các mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) theo các giao tuyến song song nên \(Q\) là giao điểm của đường thẳng qua \(N\) song song với \(A'M\) với cạnh \(BC.\)
Ta có \({V_{CNQ.C'A'M}} = {V_{N.MC'A'}} + {V_{N.CQMC'}}.\)
Ta có \(C'M = \frac{2}{3}B'C' = 2A,{S_{\Delta A'C'M}} = \frac{1}{2}A'C'.C'M.\sin {60^0} = \frac{1}{2}.3a.2a.\frac{{\sqrt 3 }}{2} = \frac{{3\sqrt 3 {a^2}}}{2}.\)
\({V_{CNQ.C'A'M}} = \frac{1}{3}.CC'.{S_{A'C'M}} = \frac{1}{3}.3a.\frac{{3\sqrt 3 {a^2}}}{2} = \frac{{3\sqrt 3 {a^3}}}{2}.\)
Gọi \(E\) là điểm trên cạnh \(BC\) sao cho \(EC = 2EB\) thì \(A'M//AE\) nên \(NQ//AE,\) ta có:
\(\frac{{CQ}}{{CE}} = \frac{{CN}}{{CA}} = \frac{1}{4} \Rightarrow CQ = \frac{1}{4}CE = \frac{1}{4}C'M = \frac{1}{2}a.\)
Diện tích hình thang \(CQMC'\) là \({S_{\Delta CQNC'}} = \frac{1}{2}CC'\left( {CQ + C'M} \right) = \frac{1}{2}.3a.\left( {\frac{1}{2}a + 2a} \right) = \frac{{15{a^2}}}{4}.\)
Thể tích khối chóp \(N.CQMC'\) là
\({V_{N.CQMC'}} = \frac{1}{3}.d\left( {N,\left( {CQMC'} \right)} \right).{S_{CQNC'}} = \frac{1}{3}.\frac{1}{4}d\left( {A,\left( {BCC'B'} \right)} \right).{S_{CQNC'}} = \frac{1}{{12}}.\frac{{3a\sqrt 3 }}{2}.\frac{{15{a^2}}}{4} = \frac{{15\sqrt 3 {a^3}}}{{32}}.\)
Thể tích khối đa diện cần tìm là
\({V_{CNQ.C'A'M}} = {V_{N.MC'A'}} + {V_{N.CQMC'}} = \frac{{3\sqrt 3 {a^3}}}{2} + \frac{{15\sqrt 3 {a^3}}}{{32}} = \frac{{63\sqrt 3 {a^3}}}{{32}}.\)
Đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?
Câu 2:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].
Câu 3:
Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là
Câu 4:
Cho 40 thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 thẻ.Xác suất để tổng các số ghi trên 3 thẻ được chọn là một số chia hết cho 3 bằng
Câu 5:
Cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(6\).Biết khoảng cách từ tâm O đến mặt phẳng \(\left( \alpha \right)\) bằng \(4\). Mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính bằng
Câu 6:
Với \[a\] là số thực dương khác \[1\] tùy ý, \[{\log _{{a^5}}}{a^4}\] bằng
Câu 7:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AC = 2a;\,BD = 3a\), \(SA = a\), \(SA\) vuông góc với mặt đáy. Thể tích của khối chóp \(S.ABCD\) là
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Bộ đề thi thử Đại học môn Toán mới nhất cực hay có lời giải (Đề 1)
về câu hỏi!