Câu hỏi:

26/04/2022 1,876 Lưu

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(3a\). Gọi \(M\)thuộc cạnh \(B'C'\) sao cho \(MC' = 2MB'\) , \(N\) thuộc cạnh \(AC\) sao cho \(AC = 4NC\) Mặt phẳng \(\left( {A'MN} \right)\) cắt cạnh \(BC\) tại \(Q\). Tính thể tích \(V\) khối đa diện \(CNQ.C'A'M\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1.

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(3a\). Gọi \(M\)thuộc cạnh \(B'C'\) sao cho \(MC' = 2MB'\) , \(N\) thuộc cạnh \(AC\) sao cho  \(AC = 4NC\) Mặt phẳng \(\ (ảnh 1)

Mặt phẳng

\(\left( {A'MN} \right)\) cắt các mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) theo các giao tuyến song song nên \(Q\) là giao điểm của đường thẳng qua \(N\) song song với \(A'M\) với cạnh \(BC.\)

Kéo dài các đường \(A'N,MQ\) và \(C'C\) đồng quy tại cùng một điểm \(P\) (3 mặt phẳng cắt nhau theo 3 giao tuyến đồng quy).

Như vậy khối đa diện cần tính thể tích là một khối chóp cụt.

Ta có \(C'M = \frac{2}{3}B'C' = 2a.{S_1} = {S_{\Delta A'C'M}} = \frac{1}{2}A'C'.C'M.\sin {60^0} = \frac{1}{2}.3a.2a.\frac{{\sqrt 3 }}{2} = \frac{{3\sqrt 3 {a^2}}}{2}.\)

Gọi \(E\) là điểm trên cạnh \(BC\) sao cho \(EC = 2EB\) thì \(A'M//AE\) nên

 

Diện tích tam giác \(CNQ\) là \({S_2} = {S_{\Delta CNQ}} = \frac{1}{2}CQ.CN.\sin {60^0} = \frac{1}{2}.\frac{a}{2}.\frac{{3a}}{4}.\frac{{\sqrt 3 }}{2} = \frac{{3\sqrt 3 {a^2}}}{{32}}.\)

Vậy ..

Cách 2:

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(3a\). Gọi \(M\)thuộc cạnh \(B'C'\) sao cho \(MC' = 2MB'\) , \(N\) thuộc cạnh \(AC\) sao cho  \(AC = 4NC\) Mặt phẳng \(\ (ảnh 2)

Mặt phẳng \(\left( {A'MN} \right)\) cắt các mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) theo các giao tuyến song song nên \(Q\) là giao điểm của đường thẳng qua \(N\) song song với \(A'M\) với cạnh \(BC.\)

Ta có \(C'M = \frac{2}{3}B'C' = 2A,{S_{\Delta A'C'M}} = \frac{1}{2}A'C'.C'M.\sin {60^0} = \frac{1}{2}.3a.2a.\frac{{\sqrt 3 }}{2} = \frac{{3\sqrt 3 {a^2}}}{2}.\)

Lại có \(\frac{{PC}}{{PC'}} = \frac{{CN}}{{A'C'}} = \frac{{CN}}{{AC}} = \frac{1}{4} \Rightarrow \frac{{PC}}{{CC'}} = \frac{1}{3} \Rightarrow PC = \frac{1}{3}.3a = a \Rightarrow PC' = 4a.\)

Thể tích khối chóp \(P.C'A'M\) là \({V_{P.C'A'M}} = \frac{1}{3}.4a.\frac{{3\sqrt 3 {a^2}}}{2} = 2\sqrt 3 {a^3}.\)

Gọi \(E\) là điểm trên cạnh \(BC\) sao cho \(EC = 2EB\) thì \(A'M//AE\) nên

\(\frac{{CQ}}{{CE}} = \frac{{CN}}{{CA}} = \frac{1}{4} \Rightarrow CQ = \frac{1}{4}CE = \frac{1}{4}C'M = \frac{1}{2}a.\)

Ta có \({S_{\Delta CNQ}} = \frac{1}{2}D\left( {N,CQ} \right).CQ = \frac{1}{2}.\frac{1}{4}.d\left( {A,BC} \right).CQ = \frac{1}{8}.\frac{{3a\sqrt 3 }}{2}.\frac{1}{2}a = \frac{{3{a^2}\sqrt 3 }}{{32}}.\)

Thể tích khối chóp \(P.CNQ\) là \({V_{P.CNQ}} = \frac{1}{3}PC.{S_{\Delta CNQ}} = \frac{1}{3}.a.\frac{{3{a^2}\sqrt 3 }}{{32}} = \frac{{{a^3}\sqrt 3 }}{{32}}.\)

Vậy \({V_{CNQ.C'A'M}} = {V_{P.C'A'M}} - {V_{P.CNQ}} = 2\sqrt 3 {a^3} - \frac{{{a^3}\sqrt 3 }}{{32}} = \frac{{63\sqrt 3 {a^3}}}{{32}}.\)

Cách 3:

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(3a\). Gọi \(M\)thuộc cạnh \(B'C'\) sao cho \(MC' = 2MB'\) , \(N\) thuộc cạnh \(AC\) sao cho  \(AC = 4NC\) Mặt phẳng \(\ (ảnh 3)

Mặt phẳng \(\left( {A'MN} \right)\) cắt các mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) theo các giao tuyến song song nên \(Q\) là giao điểm của đường thẳng qua \(N\) song song với \(A'M\) với cạnh \(BC.\)

Ta có \({V_{CNQ.C'A'M}} = {V_{N.MC'A'}} + {V_{N.CQMC'}}.\)

Ta có \(C'M = \frac{2}{3}B'C' = 2A,{S_{\Delta A'C'M}} = \frac{1}{2}A'C'.C'M.\sin {60^0} = \frac{1}{2}.3a.2a.\frac{{\sqrt 3 }}{2} = \frac{{3\sqrt 3 {a^2}}}{2}.\)

\({V_{CNQ.C'A'M}} = \frac{1}{3}.CC'.{S_{A'C'M}} = \frac{1}{3}.3a.\frac{{3\sqrt 3 {a^2}}}{2} = \frac{{3\sqrt 3 {a^3}}}{2}.\)

Gọi \(E\) là điểm trên cạnh \(BC\) sao cho \(EC = 2EB\) thì \(A'M//AE\) nên \(NQ//AE,\) ta có:

\(\frac{{CQ}}{{CE}} = \frac{{CN}}{{CA}} = \frac{1}{4} \Rightarrow CQ = \frac{1}{4}CE = \frac{1}{4}C'M = \frac{1}{2}a.\)

Diện tích hình thang \(CQMC'\) là \({S_{\Delta CQNC'}} = \frac{1}{2}CC'\left( {CQ + C'M} \right) = \frac{1}{2}.3a.\left( {\frac{1}{2}a + 2a} \right) = \frac{{15{a^2}}}{4}.\)

Thể tích khối chóp \(N.CQMC'\) là

\({V_{N.CQMC'}} = \frac{1}{3}.d\left( {N,\left( {CQMC'} \right)} \right).{S_{CQNC'}} = \frac{1}{3}.\frac{1}{4}d\left( {A,\left( {BCC'B'} \right)} \right).{S_{CQNC'}} = \frac{1}{{12}}.\frac{{3a\sqrt 3 }}{2}.\frac{{15{a^2}}}{4} = \frac{{15\sqrt 3 {a^3}}}{{32}}.\)

Thể tích khối đa diện cần tìm là

\({V_{CNQ.C'A'M}} = {V_{N.MC'A'}} + {V_{N.CQMC'}} = \frac{{3\sqrt 3 {a^3}}}{2} + \frac{{15\sqrt 3 {a^3}}}{{32}} = \frac{{63\sqrt 3 {a^3}}}{{32}}.\)

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi không gian mẫu là \(\Omega .\)

Chọn 3 từ 40 thẻ có \(C_{40}^3\) cách.

\( \Rightarrow n\left( \Omega \right) = C_{40}^3 = 9880.\)

Gọi A: “Tổng 3 số ghi trên thẻ là một số chia hết cho 3”.

Các số chia hết cho 3 từ 1 đến 40 là: \(\left\{ {3;6;9;...30;33;36;39} \right\}:\) có 13 số.

Các số chia cho 3 dư 1 từ 1 đến 40 là: \(\left\{ {1;4;7;...31;34;37;40} \right\}:\) có 14 số.

Các số chia cho 3 dư 2 từ 1 đến 40 là: \(\left\{ {2;5;8;...32;35;38} \right\}:\) có 13 số.

Trường hợp 1:3 số cùng chia hết cho 3; chia cho 3 dư 1; chia cho 3 dư 2:

Có: \(C_{13}^3 + C_{13}^3 + C_{14}^3 = 286 + 286 + 364 = 936\) cách.

Trường hợp 2:1 số chia hết cho 3, 1 số chia cho 3 dư 1 và 1 số chia cho 3 dư 2:

Có: \(C_{13}^1.C_{13}^1.C_{14}^1 = 2366\) cách.

Vậy số cách chọn để được tổng 3 số chia hết cho 3 là: \(936 + 2366 = 3302\) cách.

\( \Rightarrow n\left( A \right) = 3302.\)

Xác suất biến cố A là: \(p\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3302}}{{9880}} = \frac{{127}}{{380}}.\)

Đáp án B

Câu 2

Lời giải

Dựa vào đồ thị ta có đồ thị trên là đồ thị hàm bậc bốn trùng phương có bề lõm hướng xuống nên hệ số \(a < 0\) nên loại đáp án A và D.

Xét điểm \(\left( {1;2} \right)\) thuộc đồ thị hàm số trên.

Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + {x^2} + 1\) ta được 2 =1 (vô lý).

Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + 2{x^2} + 1\) ta được 2 = 2 (đúng).

Nên đồ thị trong hình vẽ trên là đồ thị của hàm số \(y = - {x^4} + 2{x^2} + 1.\)

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP