Câu hỏi:
26/04/2022 811Giá trị \[m\] để hàm số \[y = \frac{{{2^{ - x}} - 2}}{{{2^{ - x}} - m}}\] nghịch biến trên \[\left( { - 1;0} \right)\] là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(y' = \frac{{2 - m}}{{{{\left( {{2^{ - x}} - m} \right)}^2}}}.\left( {{2^{ - x}}} \right)' = \frac{{2 - m}}{{{{\left( {{2^{ - x}} - m} \right)}^2}}}.\left( { - {2^{ - x}}.\ln 2} \right).\)
Nhận xét: Với \(x \in \left( { - 1;0} \right) \Rightarrow {2^{ - x}} \in \left( {1;2} \right).\)
Hàm số đã cho nghịch biến trên \(\left( { - 1;0} \right) \Leftrightarrow \left\{ \begin{array}{l}{2^{ - x}} \ne m\\y' < 0\end{array} \right.\forall x \in \left( { - 1;0} \right)\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m \ge 2\\m \le 1\end{array} \right.\\2 - m >0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m \ge 2\\m \le 1\end{array} \right.\\m < 2\end{array} \right. \Leftrightarrow m \le 1.\)
Vậy với \(m \le 1\) thì hàm số \(y = \frac{{{2^{ - x}} - 2}}{{{2^{ - x}} - m}}\) nghịch biến trên \(\left( { - 1;0} \right).\)
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?
Câu 2:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].
Câu 3:
Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là
Câu 4:
Cho 40 thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 thẻ.Xác suất để tổng các số ghi trên 3 thẻ được chọn là một số chia hết cho 3 bằng
Câu 5:
Cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(6\).Biết khoảng cách từ tâm O đến mặt phẳng \(\left( \alpha \right)\) bằng \(4\). Mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính bằng
Câu 6:
Với \[a\] là số thực dương khác \[1\] tùy ý, \[{\log _{{a^5}}}{a^4}\] bằng
Câu 7:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AC = 2a;\,BD = 3a\), \(SA = a\), \(SA\) vuông góc với mặt đáy. Thể tích của khối chóp \(S.ABCD\) là
về câu hỏi!