Câu hỏi:

26/04/2022 2,278

Gọi S là tập các giá trị m nguyên\(m\) để phương trình \(9.{\left( {\sqrt {10} + 3} \right)^x} + {\left( {\sqrt {10} - 3} \right)^x} - m + 2020 = 0\) có đúng hai nghiệm âm phân biệt. Số tập con của S là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do \({\left( {\sqrt {10} + 3} \right)^x}.{\left( {\sqrt {10} - 3} \right)^x} = 1\) nên:

Đặt \({\left( {\sqrt {10} + 3} \right)^x} = t\) với \(t >0 \Rightarrow {\left( {\sqrt {10} - 3} \right)^x} = \frac{1}{t},\) ta có phương trình

\(9t + \frac{1}{t} - m + 2020 = 0 \Leftrightarrow m = 9t + \frac{1}{t} + 2020{\rm{ }}\left( * \right).\)

Phương trình đã cho có đúng hai nghiệm âm phân biệt \( \Leftrightarrow \left( * \right)\) có hai nghiệm \(t \in \left( {0;1} \right).\)

Xét hàm số \(f\left( t \right) = 9t + \frac{1}{t} + 2020 \Rightarrow f'\left( t \right) = 9 - \frac{1}{{{t^2}}}.\)

\(f'\left( t \right) = 0 \Leftrightarrow t = \pm \frac{1}{3}.\)

Bảng biến thiên:

Gọi S là tập các giá trị m nguyên\(m\) để phương trình \(9.{\left( {\sqrt {10}  + 3} \right)^x} + {\left( {\sqrt {10}  - 3} \right)^x} - m + 2020 = 0\) có đúng hai nghiệm âm phân biệt. Số tập (ảnh 1)

Do đó, \(m \in \left( {2026;2029} \right).\) Do \(m \in \mathbb{Z} \Rightarrow S = \left\{ {2027;2028;2029} \right\}.\)

Vậy số tập con của \(S\) là 8
Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi không gian mẫu là \(\Omega .\)

Chọn 3 từ 40 thẻ có \(C_{40}^3\) cách.

\( \Rightarrow n\left( \Omega \right) = C_{40}^3 = 9880.\)

Gọi A: “Tổng 3 số ghi trên thẻ là một số chia hết cho 3”.

Các số chia hết cho 3 từ 1 đến 40 là: \(\left\{ {3;6;9;...30;33;36;39} \right\}:\) có 13 số.

Các số chia cho 3 dư 1 từ 1 đến 40 là: \(\left\{ {1;4;7;...31;34;37;40} \right\}:\) có 14 số.

Các số chia cho 3 dư 2 từ 1 đến 40 là: \(\left\{ {2;5;8;...32;35;38} \right\}:\) có 13 số.

Trường hợp 1:3 số cùng chia hết cho 3; chia cho 3 dư 1; chia cho 3 dư 2:

Có: \(C_{13}^3 + C_{13}^3 + C_{14}^3 = 286 + 286 + 364 = 936\) cách.

Trường hợp 2:1 số chia hết cho 3, 1 số chia cho 3 dư 1 và 1 số chia cho 3 dư 2:

Có: \(C_{13}^1.C_{13}^1.C_{14}^1 = 2366\) cách.

Vậy số cách chọn để được tổng 3 số chia hết cho 3 là: \(936 + 2366 = 3302\) cách.

\( \Rightarrow n\left( A \right) = 3302.\)

Xác suất biến cố A là: \(p\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3302}}{{9880}} = \frac{{127}}{{380}}.\)

Đáp án B

Câu 2

Lời giải

Dựa vào đồ thị ta có đồ thị trên là đồ thị hàm bậc bốn trùng phương có bề lõm hướng xuống nên hệ số \(a < 0\) nên loại đáp án A và D.

Xét điểm \(\left( {1;2} \right)\) thuộc đồ thị hàm số trên.

Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + {x^2} + 1\) ta được 2 =1 (vô lý).

Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + 2{x^2} + 1\) ta được 2 = 2 (đúng).

Nên đồ thị trong hình vẽ trên là đồ thị của hàm số \(y = - {x^4} + 2{x^2} + 1.\)

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP