Câu hỏi:
26/04/2022 1,119Cho tứ diện \(SABC\) có đáy \(ABC\) là tam giác vuông tại \(B\) với \(\;BC = 4a,\,SA = a\sqrt 3 \) , \(SA \bot (ABC)\) và cạnh bên SB tạo với mặt đáy góc \({30^0}.\) Tính thể tích khối cầu ngoại tiếp \(SABC\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do tam giác \(ABC\) vuông tại \(B,AB\) là hình chiếu vuông góc của \(SB\) trên \(\left( {ABC} \right)\) nên suy ra tam giác \(SBC\) vuông tại \(B;SA \bot \left( {ABC} \right) \Rightarrow SAC\) là tam giác vuông tại \(A.\)
Suy ra \(A,B\) nằm trên mặt cầu đường kính \(SC.\)
Gọi \(I\) là trung điểm của \(SC\) thì \(I\) là tâm mặt cầu.
Ta có \(\widehat {\left( {SB,\left( {ABC} \right)} \right)} = \widehat {\left( {SB,AB} \right)} = \widehat {SBA} = {30^0}.\)
Đáp án A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?
Câu 2:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].
Câu 3:
Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là
Câu 4:
Cho 40 thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 thẻ.Xác suất để tổng các số ghi trên 3 thẻ được chọn là một số chia hết cho 3 bằng
Câu 5:
Cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(6\).Biết khoảng cách từ tâm O đến mặt phẳng \(\left( \alpha \right)\) bằng \(4\). Mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính bằng
Câu 6:
Với \[a\] là số thực dương khác \[1\] tùy ý, \[{\log _{{a^5}}}{a^4}\] bằng
Câu 7:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AC = 2a;\,BD = 3a\), \(SA = a\), \(SA\) vuông góc với mặt đáy. Thể tích của khối chóp \(S.ABCD\) là
về câu hỏi!