Câu hỏi:

26/04/2022 2,097

Cho 2 hàm số \(y = {\log _2}\left( {x + 2} \right)\,({C_1})\) và \(y = {\log _2}x + 1\,\,\,\left( {{C_2}} \right)\) . Goị \(A,B\) lần lượt là giao điểm của \(\left( {{C_1}} \right);\left( {{C_2}} \right)\) với trục hoành, \(C\) là giao điểm của \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\). Diện tích tam giác ABC bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

* \(\left( {{C_1}} \right) \cap \left( {{C_2}} \right)\)

\({\log _2}\left( {x + 2} \right) = {\log _2}\left( x \right) + 1 \Leftrightarrow {\log _2}\left( {x + 2} \right) = {\log _2}\left( {2x} \right)\)

\( \Leftrightarrow x + 2 = 2x \Leftrightarrow x = 2\left( {tm} \right)\)

\( \Rightarrow \left( {{C_1}} \right) \cap \left( {{C_2}} \right) = C\left( {2;2} \right)\)

* \(\left( {{C_1}} \right) \cap Ox\)

\({\log _2}\left( {x + 2} \right) = 0 \Rightarrow A\left( { - 1;0} \right)\)

* \(\left( {{C_2}} \right) \cap Ox\)

\({\log _2}\left( x \right) + 1 = 0 \Rightarrow B\left( {\frac{1}{2};0} \right)\)

\( \Rightarrow \overrightarrow {AB} \left( {\frac{3}{2};0} \right);\overrightarrow {AC} \left( {3;2} \right)\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}\left| {\overrightarrow {{x_{AB}}} .\overrightarrow {{y_{AC}}} - \overrightarrow {{x_{AC}}} .\overrightarrow {{y_{AB}}} } \right| = \frac{3}{2}\) (đvdt).

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi không gian mẫu là \(\Omega .\)

Chọn 3 từ 40 thẻ có \(C_{40}^3\) cách.

\( \Rightarrow n\left( \Omega \right) = C_{40}^3 = 9880.\)

Gọi A: “Tổng 3 số ghi trên thẻ là một số chia hết cho 3”.

Các số chia hết cho 3 từ 1 đến 40 là: \(\left\{ {3;6;9;...30;33;36;39} \right\}:\) có 13 số.

Các số chia cho 3 dư 1 từ 1 đến 40 là: \(\left\{ {1;4;7;...31;34;37;40} \right\}:\) có 14 số.

Các số chia cho 3 dư 2 từ 1 đến 40 là: \(\left\{ {2;5;8;...32;35;38} \right\}:\) có 13 số.

Trường hợp 1:3 số cùng chia hết cho 3; chia cho 3 dư 1; chia cho 3 dư 2:

Có: \(C_{13}^3 + C_{13}^3 + C_{14}^3 = 286 + 286 + 364 = 936\) cách.

Trường hợp 2:1 số chia hết cho 3, 1 số chia cho 3 dư 1 và 1 số chia cho 3 dư 2:

Có: \(C_{13}^1.C_{13}^1.C_{14}^1 = 2366\) cách.

Vậy số cách chọn để được tổng 3 số chia hết cho 3 là: \(936 + 2366 = 3302\) cách.

\( \Rightarrow n\left( A \right) = 3302.\)

Xác suất biến cố A là: \(p\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3302}}{{9880}} = \frac{{127}}{{380}}.\)

Đáp án B

Câu 2

Lời giải

Dựa vào đồ thị ta có đồ thị trên là đồ thị hàm bậc bốn trùng phương có bề lõm hướng xuống nên hệ số \(a < 0\) nên loại đáp án A và D.

Xét điểm \(\left( {1;2} \right)\) thuộc đồ thị hàm số trên.

Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + {x^2} + 1\) ta được 2 =1 (vô lý).

Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + 2{x^2} + 1\) ta được 2 = 2 (đúng).

Nên đồ thị trong hình vẽ trên là đồ thị của hàm số \(y = - {x^4} + 2{x^2} + 1.\)

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP