Câu hỏi:

26/04/2022 1,516 Lưu

Cho hai hàm số \(y = x(x - 2)(x - 3)(m - |x|);y = {x^4} - 6{x^3} + 5{x^2} + 11x - 6\) có đồ thị lần lượt là \(\left( {{C_1}} \right),\left( {{C_2}} \right)\). Có bao nhiêu giá trị nguyên \(m\) thuộc đoạn \([ - 2020;2020]\) để \(\left( {{C_1}} \right)\) cắt \(\left( {{C_2}} \right)\) tại 4 điểm phân biệt?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét phương trình hoành độ giao điểm:

\(x\left( {x - 2} \right)\left( {x - 3} \right)\left( {m - \left| x \right|} \right) = {x^4} - 6{x^3} + 5{x^2} + 11x - 6{\rm{ }}\left( 1 \right)\)

Số giao điểm của \(\left( {{C_1}} \right);\left( {{C_2}} \right)\) là số nghiệm của phương trình \(\left( 1 \right).\)

Do \(x = 0;x = 2;x = 3\) không là nghiệm của phương trình (1) nên:

\(\left( 1 \right) \Leftrightarrow \frac{{{x^4} - 6{x^3} + 5{x^2} + 11x - 6}}{{x\left( {x - 2} \right)\left( {x - 3} \right)}} = m - \left| x \right|\)

\( \Leftrightarrow x - 1 - \frac{2}{{x - 2}} - \frac{3}{{x - 3}} - \frac{1}{x} + \left| x \right| = m\)

Đặt \(f\left( x \right) = x - 1 - \frac{2}{{x - 2}} - \frac{3}{{x - 3}} - \frac{1}{x} + \left| x \right| = \left\{ \begin{array}{l}2x - 1 - \frac{2}{{x - 2}} - \frac{3}{{x - 3}} - \frac{1}{x},x >0\\ - 1 - \frac{2}{{x - 2}} - \frac{3}{{x - 3}} - \frac{1}{x},x < 0\end{array} \right.\)

Ta có \(f'\left( x \right) = \left\{ \begin{array}{l}2 + \frac{2}{{{{\left( {x - 2} \right)}^2}}} + \frac{3}{{{{\left( {x - 3} \right)}^2}}} + \frac{1}{{{x^2}}},x \ge 0\\\frac{2}{{{{\left( {x - 2} \right)}^2}}} + \frac{3}{{{{\left( {x - 3} \right)}^2}}} + \frac{1}{{{x^2}}},x < 0\end{array} \right. \Rightarrow f'\left( x \right) >0,\forall x \in \mathbb{R}.\)</>

Suy ra \(f\left( x \right)\) đồng biến trên từng khoảng xác định của nó: \(\left( { - \infty ;0} \right);\left( {0;2} \right);\left( {2;3} \right);\left( {3; + \infty } \right).\)

Mặt khác \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - 1\)

\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = - \infty \)

Bảng biến thiên

Cho hai hàm số \(y = x(x - 2)(x - 3)(m - |x|);y = {x^4} - 6{x^3} + 5{x^2} + 11x - 6\) có đồ thị lần lượt là \(\left( {{C_1}} \right),\left( {{C_2}} \right)\). Có bao nhiêu giá trị nguyên \(m\ (ảnh 1)
Từ bảng biến thiên suy ra phương trình (1) có 4 nghiệm phân biệt khi \(m >- 1.\)
Vậy số giá trị nguyên của \(m \in \left[ { - 2020;2020} \right]\) thỏa mãn là 2021.
Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi không gian mẫu là \(\Omega .\)

Chọn 3 từ 40 thẻ có \(C_{40}^3\) cách.

\( \Rightarrow n\left( \Omega \right) = C_{40}^3 = 9880.\)

Gọi A: “Tổng 3 số ghi trên thẻ là một số chia hết cho 3”.

Các số chia hết cho 3 từ 1 đến 40 là: \(\left\{ {3;6;9;...30;33;36;39} \right\}:\) có 13 số.

Các số chia cho 3 dư 1 từ 1 đến 40 là: \(\left\{ {1;4;7;...31;34;37;40} \right\}:\) có 14 số.

Các số chia cho 3 dư 2 từ 1 đến 40 là: \(\left\{ {2;5;8;...32;35;38} \right\}:\) có 13 số.

Trường hợp 1:3 số cùng chia hết cho 3; chia cho 3 dư 1; chia cho 3 dư 2:

Có: \(C_{13}^3 + C_{13}^3 + C_{14}^3 = 286 + 286 + 364 = 936\) cách.

Trường hợp 2:1 số chia hết cho 3, 1 số chia cho 3 dư 1 và 1 số chia cho 3 dư 2:

Có: \(C_{13}^1.C_{13}^1.C_{14}^1 = 2366\) cách.

Vậy số cách chọn để được tổng 3 số chia hết cho 3 là: \(936 + 2366 = 3302\) cách.

\( \Rightarrow n\left( A \right) = 3302.\)

Xác suất biến cố A là: \(p\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3302}}{{9880}} = \frac{{127}}{{380}}.\)

Đáp án B

Câu 2

Lời giải

Dựa vào đồ thị ta có đồ thị trên là đồ thị hàm bậc bốn trùng phương có bề lõm hướng xuống nên hệ số \(a < 0\) nên loại đáp án A và D.

Xét điểm \(\left( {1;2} \right)\) thuộc đồ thị hàm số trên.

Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + {x^2} + 1\) ta được 2 =1 (vô lý).

Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + 2{x^2} + 1\) ta được 2 = 2 (đúng).

Nên đồ thị trong hình vẽ trên là đồ thị của hàm số \(y = - {x^4} + 2{x^2} + 1.\)

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP