Câu hỏi:
26/04/2022 577Số nghiệm của phương trình \[{e^{\frac{{{x^2}}}{2} + x - 2020}} = \ln \left( {{x^2} - 2} \right) + \frac{{{x^2}}}{2} - x + 2018\] là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\({e^{\frac{{{x^2}}}{2} + x - 2020}} = \ln \left( {{x^2} - 2} \right) + \frac{{{x^2}}}{2} - x + 2018{\rm{ }}\left( 1 \right) \Leftrightarrow {e^{\frac{{{x^2}}}{2} + x - 2020}} + \frac{{{x^2}}}{2} + x - 2020 = \ln \left( {{x^2} - 2} \right) + {x^2} - 2\)
\( \Leftrightarrow {e^{\frac{{{x^2}}}{2} + x - 2020}} + \frac{{{x^2}}}{2} + x - 2020 = {e^{\ln \left( {{x^2} - 2} \right)}} + {x^2} - 2{\rm{ }}\left( 2 \right)\)
Xét hàm số: \(f\left( t \right) = {e^t} + t,t \in \mathbb{R}\)
Ta có \(f'\left( t \right) = {e^t} + 1 >0,\forall t \in \mathbb{R}.\) Do đó \(f\left( t \right)\) đồng biến trên \(\mathbb{R}.\)
\(\left( 2 \right) \Leftrightarrow f\left( {\frac{{{x^2}}}{2} + x - 2020} \right) = f\left( {\ln \left( {{x^2} - 2} \right)} \right) \Leftrightarrow \frac{{{x^2}}}{2} + x - 2020 = \ln \left( {{x^2} - 2} \right)\)
\( \Leftrightarrow \frac{{{x^2}}}{2} - x - 2020 - \ln \left( {{x^2} - 2} \right) = 0{\rm{ }}\left( 3 \right)\)
Xét hàm số:
\(g\left( x \right) = \frac{{{x^2}}}{2} + x - 2020 - \ln \left( {{x^2} - 2} \right),\left[ \begin{array}{l}x >\sqrt 2 \\x < - \sqrt 2 \end{array} \right. \Rightarrow g'\left( x \right) = x + 1 - \frac{{2x}}{{{x^2} - 1}} = \frac{{{x^3} + {x^2} - 4x - 2}}{{{x^2} - 2}}\)
Xét \(h\left( x \right) = {x^3} + {x^2} - 4x - 2\) liên tục trên \(\mathbb{R}\) và có:
\(h\left( { - 3} \right) = - 8;h\left( { - 2} \right) = 2;h\left( { - 1} \right) = 2;h\left( 0 \right) = - 2;h\left( {\sqrt 3 } \right) = 1 - \sqrt 3 ;h\left( 2 \right) = 2\)
\( \Rightarrow \left\{ \begin{array}{l}h\left( { - 3} \right).h\left( { - 2} \right) < 0\\h\left( { - 1} \right).h\left( 0 \right) < 0\\h\left( {\sqrt 3 } \right).h\left( 2 \right) < 0\end{array} \right. \Rightarrow h\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = a \in \left( { - 3; - 2} \right)\\x = b \in \left( { - 1;0} \right)\\x = c \in \left( {\sqrt 3 ;2} \right)\end{array} \right.\)
\(\mathop {\lim }\limits_{x \to {{\left( {\sqrt 2 } \right)}^ - }} g\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to {{\left( {\sqrt 2 } \right)}^ + }} g\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = + \infty \)
Bảng biến thiên hàm số \(g\left( x \right)\)
Với \[\] suy ra \(g\left( a \right) < g\left( { - 3} \right) = \frac{9}{2} - 3 - 2020 - \ln 7 < 0\)
Với \(c \in \left( {\sqrt 3 ;2} \right)\) suy ra \(g\left( c \right) < g\left( {\sqrt 3 } \right) = \frac{3}{2} + \sqrt 3 - 2020 < 0\)
Do đó phương trình \(\left( 3 \right)\) có 4 nghiệm phân biệt.
Đáp án A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?
Câu 2:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].
Câu 3:
Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là
Câu 4:
Cho 40 thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 thẻ.Xác suất để tổng các số ghi trên 3 thẻ được chọn là một số chia hết cho 3 bằng
Câu 5:
Cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(6\).Biết khoảng cách từ tâm O đến mặt phẳng \(\left( \alpha \right)\) bằng \(4\). Mặt phẳng \(\left( \alpha \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính bằng
Câu 6:
Với \[a\] là số thực dương khác \[1\] tùy ý, \[{\log _{{a^5}}}{a^4}\] bằng
Câu 7:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AC = 2a;\,BD = 3a\), \(SA = a\), \(SA\) vuông góc với mặt đáy. Thể tích của khối chóp \(S.ABCD\) là
về câu hỏi!